Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38778899

RESUMEN

The Caenorhabditis RNA-seq Browser is an open-source Shiny web app that enables on-demand visualization and quantification of bulk RNA-sequencing data for five Caenorhabditis species: C. elegans , C. briggsae , C. brenneri , C. japonica , and C. remanei . The app is designed to allow researchers without previous coding experience to interactively explore publicly available Caenorhabditis RNA-sequencing data. Key app features include the ability to plot gene expression across life stages for user-specified gene sets, and modules for performing differential gene expression analyses. The Caenorhabditis RNA-seq Browser can be accessed online via shinyapps.io or can be installed locally in R from a GitHub repository.

2.
bioRxiv ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38293065

RESUMEN

A catalog of transcription factor (TF) binding sites in the genome is critical for deciphering regulatory relationships. Here we present the culmination of the modERN (model organism Encyclopedia of Regulatory Networks) consortium that systematically assayed TF binding events in vivo in two major model organisms, Drosophila melanogaster (fly) and Caenorhabditis elegans (worm). We describe key features of these datasets, comprising 604 TFs identifying 3.6M sites in the fly and 350 TFs identifying 0.9 M sites in the worm. Applying a machine learning model to these data identifies sets of TFs with a prominent role in promoting target gene expression in specific cell types. TF binding data are available through the ENCODE Data Coordinating Center and at https://epic.gs.washington.edu/modERNresource, which provides access to processed and summary data, as well as widgets to probe cell type-specific TF-target relationships. These data are a rich resource that should fuel investigations into TF function during development.

3.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37186213

RESUMEN

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Genómica/métodos , Análisis de Secuencia de ADN , Polimorfismo Genético , Tamaño del Genoma
4.
Nat Genet ; 55(11): 1953-1963, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37919451

RESUMEN

The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.


Asunto(s)
Evolución Molecular , Genómica , Haplotipos/genética , Genoma/genética , Dosificación de Gen
5.
Genome Res ; 33(4): 557-571, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37147111

RESUMEN

Because of diverged adaptative phenotypes, fish species of the genus Xiphophorus have contributed to a wide range of research for a century. Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, thus hindering advancement of the intra- and inter-species differences for evolutionary, comparative, and translational biomedical studies. Herein, we assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species, namely, X. maculatus, X. couchianus, and X. hellerii Our overall goal is to precisely assess microevolutionary processes in the clade to ascertain molecular events that led to the divergence of the Xiphophorus species and to progress understanding of genetic incompatibility to disease. In particular, we measured intra- and inter-species divergence and assessed gene expression dysregulation in reciprocal interspecies hybrids among the three species. We found expanded gene families and positively selected genes associated with live bearing, a special mode of reproduction. We also found positively selected gene families are significantly enriched in nonpolymorphic transposable elements, suggesting the dispersal of these nonpolymorphic transposable elements has accompanied the evolution of the genes, possibly by incorporating new regulatory elements in support of the Britten-Davidson hypothesis. We characterized inter-specific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans.


Asunto(s)
Ciprinodontiformes , Elementos Transponibles de ADN , Animales , Humanos , Elementos Transponibles de ADN/genética , Epistasis Genética , Hibridación Genética , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo
7.
Nature ; 594(7861): 77-81, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33953399

RESUMEN

The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3-5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome.


Asunto(s)
Evolución Molecular , Genoma/genética , Genómica , Pan paniscus/genética , Filogenia , Animales , Factor 4A Eucariótico de Iniciación/genética , Femenino , Genes , Gorilla gorilla/genética , Anotación de Secuencia Molecular/normas , Pan troglodytes/genética , Pongo/genética , Duplicaciones Segmentarias en el Genoma , Análisis de Secuencia de ADN
8.
Nat Commun ; 12(1): 1447, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664263

RESUMEN

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26. We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.


Asunto(s)
Adaptación Fisiológica/genética , Characidae/embriología , Characidae/genética , Ojo/embriología , Herencia Multifactorial/genética , Animales , Evolución Biológica , Cuevas , Mapeo Cromosómico , Evolución Molecular , Edición Génica , Genoma/genética , Proteínas de Homeodominio/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Sitios de Carácter Cuantitativo/genética
9.
Science ; 370(6523)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33335035

RESUMEN

The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma , Macaca mulatta/genética , Polimorfismo de Nucleótido Simple , Animales , Variación Genética , Humanos , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma
11.
PLoS Genet ; 16(10): e1008926, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090996

RESUMEN

The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models.


Asunto(s)
Enanismo/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Genoma/genética , Uridina Difosfato Glucosa Deshidrogenasa/genética , Secuenciación Completa del Genoma , Alelos , Animales , Gatos , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética
12.
BMC Biol ; 18(1): 14, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32050986

RESUMEN

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Asunto(s)
Coturnix/genética , Genoma , Rasgos de la Historia de Vida , Enfermedades de las Aves de Corral/genética , Conducta Social , Animales , Estaciones del Año
13.
BMC Genomics ; 20(1): 500, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208332

RESUMEN

BACKGROUND: The wide variety of specialized permissive and repressive mechanisms by which germ cells regulate developmental gene expression are not well understood genome-wide. Isolation of germ cells with high integrity and purity from living animals is necessary to address these open questions, but no straightforward methods are currently available. RESULTS: Here we present an experimental paradigm that permits the isolation of nuclei from C. elegans germ cells at quantities sufficient for genomic analyses. We demonstrate that these nuclei represent a very pure population and are suitable for both transcriptome analysis (RNA-seq) and chromatin immunoprecipitation (ChIP-seq) of histone modifications. From these data, we find unexpected germline- and soma-specific patterns of gene regulation. CONCLUSIONS: This new capacity removes a major barrier in the field to dissect gene expression mechanisms in the germ line of C. elegans. Consequent discoveries using this technology will be relevant to conserved regulatory mechanisms across species.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Núcleo Celular/genética , Perfilación de la Expresión Génica , Genómica , Células Germinativas/citología , Código de Histonas , Animales , Cromatina/genética
14.
Genome Res ; 29(6): 1036-1045, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31123079

RESUMEN

We have used RNA-seq in Caenorhabditis elegans to produce transcription profiles for seven specific embryonic cell populations from gastrulation to the onset of terminal differentiation. The expression data for these seven cell populations, covering major cell lineages and tissues in the worm, reveal the complex and dynamic changes in gene expression, both spatially and temporally. Also, within genes, start sites and exon usage can be highly differential, producing transcripts that are specific to developmental periods or cell lineages. We have also found evidence of novel exons and introns, as well as differential usage of SL1 and SL2 splice leaders. By combining this data set with the modERN ChIP-seq resource, we are able to support and predict gene regulatory relationships. The detailed information on differences and similarities between gene expression in cell lineages and tissues should be of great value to the community and provides a framework for the investigation of expression in individual cells.


Asunto(s)
Empalme Alternativo , Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Transcriptoma , Animales , Caenorhabditis elegans/embriología , Biología Computacional/métodos , Exones , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Intrones , Anotación de Secuencia Molecular , Especificidad de Órganos , Edición de ARN , Sitios de Empalme de ARN
15.
Nat Ecol Evol ; 2(4): 669-679, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29434351

RESUMEN

The extreme rarity of asexual vertebrates in nature is generally explained by genomic decay due to absence of meiotic recombination, thus leading to extinction of such lineages. We explore features of a vertebrate asexual genome, the Amazon molly, Poecilia formosa, and find few signs of genetic degeneration but unique genetic variability and ongoing evolution. We uncovered a substantial clonal polymorphism and, as a conserved feature from its interspecific hybrid origin, a 10-fold higher heterozygosity than in the sexual parental species. These characteristics seem to be a principal reason for the unpredicted fitness of this asexual vertebrate. Our data suggest that asexual vertebrate lineages are scarce not because they are at a disadvantage, but because the genomic combinations required to bypass meiosis and to make up a functioning hybrid genome are rarely met in nature.


Asunto(s)
Genoma , Poecilia/genética , Polimorfismo Genético , Reproducción Asexuada/genética , Animales , Evolución Biológica , Femenino
16.
Genetics ; 208(3): 937-949, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29284660

RESUMEN

To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bases de Datos Genéticas , Drosophila/genética , Drosophila/metabolismo , Estudio de Asociación del Genoma Completo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina , Estudio de Asociación del Genoma Completo/métodos , Modelos Biológicos , Motivos de Nucleótidos , Unión Proteica
17.
Gigascience ; 6(11): 1-6, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29092041

RESUMEN

The chimpanzee is arguably the most important species for the study of human origins. A key resource for these studies is a high-quality reference genome assembly; however, as with most mammalian genomes, the current iteration of the chimpanzee reference genome assembly is highly fragmented. In the current iteration of the chimpanzee reference genome assembly (Pan_tro_2.1.4), the sequence is scattered across more then 183 000 contigs, incorporating more than 159 000 gaps, with a genome-wide contig N50 of 51 Kbp. In this work, we produce an extensive and diverse array of sequencing datasets to rapidly assemble a new chimpanzee reference that surpasses previous iterations in bases represented and organized in large scaffolds. To this end, we show substantial improvements over the current release of the chimpanzee genome (Pan_tro_2.1.4) by several metrics, such as increased contiguity by >750% and 300% on contigs and scaffolds, respectively, and closure of 77% of gaps in the Pan_tro_2.1.4 assembly gaps spanning >850 Kbp of the novel coding sequence based on RNASeq data. We further report more than 2700 genes that had putatively erroneous frame-shift predictions to human in Pan_tro_2.1.4 and show a substantial increase in the annotation of repetitive elements. We apply a simple 3-way hybrid approach to considerably improve the reference genome assembly for the chimpanzee, providing a valuable resource for the study of human origins. Furthermore, we produce extensive sequencing datasets that are all derived from the same cell line, generating a broad non-human benchmark dataset.


Asunto(s)
Mapeo Contig/normas , Genoma , Genómica/normas , Anotación de Secuencia Molecular/normas , Pan troglodytes/genética , Secuenciación Completa del Genoma/normas , Animales , Mapeo Contig/métodos , Genómica/métodos , Anotación de Secuencia Molecular/métodos , Estándares de Referencia , Secuenciación Completa del Genoma/métodos
19.
Nat Commun ; 8: 15451, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28508897

RESUMEN

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Asunto(s)
Biomphalaria/genética , Biomphalaria/parasitología , Genoma , Esquistosomiasis mansoni/transmisión , Comunicación Animal , Animales , Biomphalaria/inmunología , Elementos Transponibles de ADN , Evolución Molecular , Agua Dulce , Regulación de la Expresión Génica , Interacciones Huésped-Parásitos , Feromonas , Proteoma , Schistosoma mansoni , Análisis de Secuencia de ADN , Estrés Fisiológico
20.
G3 (Bethesda) ; 7(1): 109-117, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27852011

RESUMEN

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.


Asunto(s)
Pollos/genética , Genoma/genética , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Animales , Cromosomas Artificiales Bacterianos , Biología Computacional , Mapeo Contig
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...