Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(12): e2318716121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483991

RESUMEN

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

2.
J Adv Model Earth Syst ; 14(6): e2021MS002889, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35864945

RESUMEN

A new configuration of the Community Earth System Model (CESM)/Community Atmosphere Model with full chemistry (CAM-chem) supporting the capability of horizontal mesh refinement through the use of the spectral element (SE) dynamical core is developed and called CESM/CAM-chem-SE. Horizontal mesh refinement in CESM/CAM-chem-SE is unique and novel in that pollutants such as ozone are accurately represented at human exposure relevant scales while also directly including global feedbacks. CESM/CAM-chem-SE with mesh refinement down to ∼14 km over the conterminous US (CONUS) is the beginning of the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0). Here, MUSICAv0 is evaluated and used to better understand how horizontal resolution and chemical complexity impact ozone and ozone precursors over CONUS as compared to measurements from five aircraft campaigns, which occurred in 2013. This field campaign analysis demonstrates the importance of using finer horizontal resolution to accurately simulate ozone precursors such as nitrogen oxides and carbon monoxide. In general, the impact of using more complex chemistry on ozone and other oxidation products is more pronounced when using finer horizontal resolution where a larger number of chemical regimes are resolved. Large model biases for ozone near the surface remain in the Southeast US as compared to the aircraft observations even with updated chemistry and finer horizontal resolution. This suggests a need for adding the capability of replacing sections of global emission inventories with regional inventories, increasing the vertical resolution in the planetary boundary layer, and reducing model biases in meteorological variables such as temperature and clouds.

3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930838

RESUMEN

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (-7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Biomasa , Ozono , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Atmósfera , Ecosistema , Incendios , Ozono/análisis , Ozono/química
4.
Environ Sci Technol ; 55(17): 11795-11804, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34488352

RESUMEN

Wildland firefighters are exposed to smoke-containing particulate matter (PM) and volatile organic compounds (VOCs) while suppressing wildfires. From 2015 to 2017, the U.S. Forest Service conducted a field study collecting breathing zone measurements of PM4 (particulate matter with aerodynamic diameter ≤4 µm) on wildland firefighters from different crew types and while performing various fire suppression tasks on wildfires. Emission ratios of VOC (parts per billion; ppb): PM1 (particulate matter with aerodynamic diameter ≤1 µm; mg/m3) were calculated using data from a separate field study conducted in summer 2018, the Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) Campaign. These emission ratios were used to estimate wildland firefighter exposure to acrolein, benzene, and formaldehyde. Results of this field sampling campaign reported that exposure to PM4 and VOC varied across wildland firefighter crew type and job task. Type 1 crews had greater exposures to both PM4 and VOCs than type 2 or type 2 initial attack crews, and wildland firefighters performing direct suppression had statistically higher exposures than those performing staging and other tasks (mean differences = 0.82 and 0.75 mg/m3; 95% confidence intervals = 0.38-1.26 and 0.41-1.08 mg/m3, respectively). Of the 81 personal exposure samples collected, 19% of measured PM4 exposures exceeded the recommended National Wildland Fire Coordinating Group occupational exposure limit (0.7 mg/m3). Wildland fire management should continue to find strategies to reduce smoke exposures for wildland firefighters.


Asunto(s)
Bomberos , Incendios , Exposición Profesional , Compuestos Orgánicos Volátiles , Humanos , Material Particulado/análisis , Humo/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Environ Sci Technol ; 55(9): 5657-5667, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881834

RESUMEN

A new airborne system, the Whole Air Sampling Pilotless Platform (WASPP), is described for the collection of whole air samples and in situ meteorological measurements onboard a commercial hexacopter. Rapid sample collection enables the collection ≤15 air samples per flight in positively pressurized miniature canisters, subsequently analyzed on a mated analytical system for up to 80 nonmethane volatile organic compounds (VOCs). The WASPP is well suited to investigate VOC gradients in urban environments impacted by traffic, industry, and oil and natural gas (O&NG) development, but has the sensitivity to characterize continental background conditions, as shown here using a subset of >40 species. We document empirical tests to minimize the influence of rotor wash and other sampling artifacts and report favorable results of laboratory-based calibrations of the WASPP's meteorological sensors and field-based comparisons of WASPP's VOC measurements and horizontal wind velocity measurements. Airborne WASPP measurements can complement and enhance ground-based VOC monitoring efforts by providing substantial meteorological and VOC measurement capability across vertical and horizontal spatial scales. These measurements reveal strong vertical gradients in VOC mixing ratios, depending on local meteorology and sources. WASPP has wide applicability for pollution source identification and quantification of hazardous air pollutants and precursors of criteria pollutants, including monitoring O&NG emissions or industry fenceline monitoring.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Aeronaves , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis
6.
Environ Sci Technol ; 54(10): 5954-5963, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32294377

RESUMEN

Wildfires are an important source of nitrous acid (HONO), a photolabile radical precursor, yet in situ measurements and quantification of primary HONO emissions from open wildfires have been scarce. We present airborne observations of HONO within wildfire plumes sampled during the Western Wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) campaign. ΔHONO/ΔCO close to the fire locations ranged from 0.7 to 17 pptv ppbv-1 using a maximum enhancement method, with the median similar to previous observations of temperate forest fire plumes. Measured HONO to NOx enhancement ratios were generally factors of 2, or higher, at early plume ages than previous studies. Enhancement ratios scale with modified combustion efficiency and certain nitrogenous trace gases, which may be useful to estimate HONO release when HONO observations are lacking or plumes have photochemical exposures exceeding an hour as emitted HONO is rapidly photolyzed. We find that HONO photolysis is the dominant contributor to hydrogen oxide radicals (HOx = OH + HO2) in early stage (<3 h) wildfire plume evolution. These results highlight the role of HONO as a major component of reactive nitrogen emissions from wildfires and the main driver of initial photochemical oxidation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Incendios Forestales , Aerosoles , Ácido Nitroso/análisis , Humo
7.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071211

RESUMEN

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

8.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32606484

RESUMEN

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

9.
Mycol Res ; 111(Pt 4): 403-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17512181

RESUMEN

A recent analysis of the Xerocomus subtomentosus complex in Europe using rDNA-ITS sequence data distinguished four taxa in Europe. Two of these corresponded to the established taxa X. subtomentosus and X. ferrugineus, and a new taxon, X. chrysonemus, was described. The fourth taxon was noted but left undescribed owing to lack of material. Here, we describe this taxon as X. silwoodensis sp. nov. X. silwoodensis is a rare but widespread taxon known from single sites in Italy and Spain, and three in the UK. The features of X. silwoodensis basidiomes are very similar to other members of the complex but the pileus colours tend to show richer red-brown tones and the stipe often radicates deeply into the substrate. The taxon also exhibits a strong preference for associating with Populus species, whereas the other taxa are associated with either Quercus (X. chrysonemus) or generalists on broadleaved hosts (X. subtomentosus) or conifers and broadleaved trees (X. ferrugineus). Microscopically, the spore characteristics of X. silwoodensis are similar to the recently described X. chrysonemus, but differ significantly from both X. subtomentosus and X. ferrugineus. X. silwoodensis is probably overlooked due to the resemblance to other taxa within the complex. The present study on the identification and description of X. silwoodensis should reduce the confusion associated with the identification of taxa within this species complex and lead to a more accurate assessment of the geographic distribution and conservation needs of the taxa.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , ADN de Hongos/genética , ADN Ribosómico/genética , ADN Espaciador Ribosómico/genética , Italia , Filogenia , Análisis de Secuencia de ADN , España , Especificidad de la Especie , Esporas Fúngicas/citología , Reino Unido
10.
Mycol Res ; 110(Pt 3): 276-87, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16483755

RESUMEN

Identification of species within the boletoid genus Xerocomus has relied heavily upon the macromorphological features of the basidiomes. However, the phenotypic plasticity of these features has resulted in considerable confusion over the delimitation of taxa. In this study, we examined collections attributed to the X. subtomentosus complex in Europe using morphological and rDNA-ITS sequence data. In total, 45 European collections from a wide range of geographical areas and ecological conditions were included in the study. In spite of detecting considerable genetic variation, even within individual basidiomes of X. subtomentosus, molecular data, spore size, flesh colour, and the colour of the basal mycelium allow for the recognition of four distinct taxa: two correspond to X. subtomentosus (13 collections) and X. ferrugineus (20); one X. chrysonemus sp. nov. (10), to date only found in the UK, is described as new; and the existence of another taxon (two; Italy and UK) is noted but left undescribed owing to lack of material. Eight collections from North America were also included in the study, from which two taxa with a close affinity to X. ferrugineus were recognised.


Asunto(s)
Basidiomycota/clasificación , ADN de Hongos/química , Basidiomycota/citología , Basidiomycota/genética , ADN Ribosómico/química , Filogenia , Análisis de Secuencia de ADN
11.
Appl Opt ; 43(24): 4685-96, 2004 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-15352393

RESUMEN

The Measurements of Pollution in the Troposphere (MOPITT) Airborne Test Radiometer (MATR) uses gas correlation filter radiometry from high-altitude aircraft to measure tropospheric carbon monoxide. This radiometer is used in support of the ongoing validation campaign for the MOPITT instrument aboard the Earth Observation System Terra satellite. A recent study of MATR CO retrievals that used data from the autumn of 2001 in the western United States is presented. Retrievals of the CO total column were performed and compared to in situ sampling with less than 10% retrieval error. Effects that influence retrieval, such as instrument sensitivity, retrieval sensitivity, and the bias between observations and the radiative transfer model, are discussed. Comparisons of MATR and MOPITT retrievals show promising consistency. A preliminary interpretation of MATR results is also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...