Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(2): 021102, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859044

RESUMEN

During the past decade, a number of diagnostic instruments have been developed that utilize electron pulse-dilation to achieve temporal resolution in the 5-30 ps range. These development efforts were motivated by the need for advanced diagnostics for high-energy density physics experiments around the world. The new instruments include single- and multi-frame gated imagers and non-imaging detectors that record continuous data streams. Electron pulse-dilation provides high-speed detection capability by converting incoming signals into a free electron cloud and manipulating the electron signal with electric and magnetic fields. Here, we discuss design details and applications of these instruments along with issues and challenges associated with employing the electron pulse-dilation technique. Additionally, methods to characterize instrument performance and improve tolerance to gamma and neutron background radiation are discussed.

2.
Rev Sci Instrum ; 93(11): 113528, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461449

RESUMEN

In the dynamic environment of burning, thermonuclear deuterium-tritium plasmas, diagnosing the time-resolved neutron energy spectrum is of critical importance. Strategies exist for this diagnosis in magnetic confinement fusion plasmas, which presently have a lifetime of ∼1012 longer than inertial confinement fusion (ICF) plasmas. Here, we present a novel concept for a simple, precise, and scale-able diagnostic to measure time-resolved neutron spectra in ICF plasmas. The concept leverages general tomographic reconstruction techniques adapted to time-of-flight parameter space, and then employs an updated Monte Carlo algorithm and National Ignition Facility-relevant constraints to reconstruct the time-evolving neutron energy spectrum. Reconstructed spectra of the primary 14.028 MeV nDT peak are in good agreement with the exact synthetic spectra. The technique is also used to reconstruct the time-evolving downscattered spectrum, although the present implementation shows significantly more error.

3.
Rev Sci Instrum ; 93(11): 113536, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461534

RESUMEN

A concept for using an intermediate distance (0.3-3.0 m) neutron time-of-flight (nToF) to provide a constraint on the measurement of the time-dependence of ion temperature in inertial confinement fusion implosions is presented. Simulated nToF signals at different distances are generated and, with a priori knowledge of the burn-averaged quantities and burn history, analyzed to determine requirements for a future detector. Results indicate a signal-to-noise ratio >50 and time resolution <20 ps to constrain the ion temperature gradient to ∼±25% (0.5 keV/100 ps).

4.
Rev Sci Instrum ; 93(8): 083516, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050109

RESUMEN

The hardened single line of sight camera has been recently characterized in preparation for its deployment on the National Ignition Facility. The latest creation based on the pulse-dilation technology leads to many new features and improvements over the previous-generation cameras to provide better quality measurements of inertial confinement fusion experiments, including during high neutron yield implosions. Here, we present the characterization data that illustrate the main performance features of this instrument, such as extended dynamic range and adjustable internal magnification, leading to improved spatial resolution.

5.
Rev Sci Instrum ; 89(11): 113508, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30501287

RESUMEN

The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the deuterium-tritium-neutron spectrum from inertial confinement fusion implosions at the National Ignition Facility. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn. The absolute neutron spectrum in the energy range of 12-16 MeV will be measured with high accuracy (∼5%), unprecedented energy resolution (∼100 keV) and, for the first time ever, time resolution (∼20 ps). Crucial to the design of the system is a CD conversion foil for the production of recoil deuterons positioned as close to the implosion as possible. The foil-on-hohlraum technique has been demonstrated by placing a 1-mm-diameter, 40-µm-thick CD foil on the hohlraum diagnostic band along the line-of-sight of the current time-integrated MRS system, which measured the recoil deuterons. In addition to providing validation of the foil-on-hohlraum technique for the MRSt design, substantial improvement of the MRS energy resolution has been demonstrated.

6.
Rev Sci Instrum ; 89(10): 10G123, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399697

RESUMEN

A new generation of fast-gated x-ray framing cameras have been developed that are capable of capturing multiple frames along a single line-of-sight with 30 ps temporal resolution. The instruments are constructed by integrating pulse-dilation electron imaging with burst mode hybrid-complimentary metal-oxide-semiconductor sensors. Two such instruments have been developed, characterized, and fielded at the National Ignition Facility and the OMEGA laser. These instruments are particularly suited for advanced x-ray imaging applications in Inertial Confinement Fusion and High energy density experiments. Here, we discuss the system architecture and the techniques required for tuning the instruments to achieve optimal performance. Characterization results are also presented along with planned future improvements to the design.

7.
Rev Sci Instrum ; 89(10): 10G117, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399700

RESUMEN

The single-line-of-sight, time-resolved x-ray imager (SLOS-TRXI) on OMEGA is one of a new generation of fast-gated x-ray cameras comprising an electron pulse-dilation imager and a nanosecond-gated, burst-mode, hybrid complementary metal-oxide semiconductor sensor. SLOS-TRXI images the core of imploded cryogenic deuterium-tritium shells in inertial confinement fusion experiments in the ∼4- to 9-keV photon energy range with a pinhole imager onto a photocathode. The diagnostic is mounted on a fixed port almost perpendicular to a 16-channel, framing-camera-based, time-resolved Kirkpatrick-Baez microscope, providing a second time-gated line of sight for hot-spot imaging on OMEGA. SLOS-TRXI achieves ∼40-ps temporal resolution and better than 10-µm spatial resolution. Shots with neutron yields of up to 1 × 1014 were taken without observed neutron-induced background signal. The implosion images from SLOS-TRXI show the evolution of the stagnating core.

8.
Rev Sci Instrum ; 89(10): 10G125, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399712

RESUMEN

Crystal x-ray imaging is frequently used in inertial confinement fusion and laser-plasma interaction applications as it has advantages compared to pinhole imaging, such as higher signal throughput, better achievable spatial resolution, and chromatic selection. However, currently used x-ray detectors are only able to obtain a single time resolved image per crystal. The dilation aided single-line-of-sight x-ray camera described here was designed for the National Ignition Facility (NIF) and combines two recent diagnostic developments, the pulse dilation principle used in the dilation x-ray imager and a ns-scale multi-frame camera that uses a hold and readout circuit for each pixel. This enables multiple images to be taken from a single-line-of-sight with high spatial and temporal resolution. At the moment, the instrument can record two single-line-of-sight images with spatial and temporal resolution of 35 µm and down to 35 ps, respectively, with a planned upgrade doubling the number of images to four. Here we present the dilation aided single-line-of-sight camera for the NIF, including the x-ray characterization measurements obtained at the COMET laser, as well as the results from the initial timing shot on the NIF.

9.
Rev Sci Instrum ; 89(6): 063506, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960515

RESUMEN

A pulse-dilation photomultiplier tube (PD-PMT) with sub-20 ps temporal resolution has been developed for use with γ-ray-sensitive gas Cherenkov detectors at the National Ignition Facility to improve the diagnosis of nuclear fusion burn history and the areal density of the remaining capsule ablator. The pulse-dilation mechanism entails the application of a time-dependent, ramp waveform to a photocathode-mesh structure, introducing a time-dependent photoelectron accelerating potential. The electric field imparts axial velocity dispersion to outgoing photoelectrons. The photoelectron pulse is dilated as it transits a drift region prior to amplification in a microchannel plate and read out with a digital oscilloscope. We report the first measurements with the prototype PD-PMT demonstrating nominal <20 ps FWHM across a 400 ps measurement window and <30 ps FWHM for an extracted charge up to 300 pC. The output peak areas are linear to within 20% over 3 orders of magnitude of input intensity. 3D particle in cell simulations, which included space charge effects, have been carried out to investigate the device temporal magnification, resolution, and linearity.

10.
Rev Sci Instrum ; 87(11): 11E311, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910406

RESUMEN

The dilation x-ray imager (DIXI) [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010); S. R. Nagel et al., ibid. 83, 10E116 (2012); S. R. Nagel et al., ibid. 85, 11E504 (2014)] is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10 × improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method [J. Salmon et al., J. Math. Imaging Vision 48, 279294 (2014)] to improve the robustness of the DIXI data analysis. Here we present results on ignition-relevant experiments at the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P0, P2, and P4 Legendre modes, and their temporal evolution/swings).

11.
Rev Sci Instrum ; 87(11): 11D806, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910467

RESUMEN

The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼1016. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

13.
Rev Sci Instrum ; 87(11): 11E202, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910532

RESUMEN

We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

14.
Rev Sci Instrum ; 87(11): 11D808, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910587

RESUMEN

A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of ∼20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50-100 times.

15.
Rev Sci Instrum ; 87(11): 11E331, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910592

RESUMEN

We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1-12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

16.
Rev Sci Instrum ; 87(11): 11D807, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910684

RESUMEN

A time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum is presented. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording. Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.

17.
Rev Sci Instrum ; 85(11): 11D625, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430201

RESUMEN

A computer model in CST Studio Suite has been developed to evaluate several novel geometrically enhanced photocathode designs. This work was aimed at identifying a structure that would increase the total electron yield by a factor of two or greater in the 1-30 keV range. The modeling software was used to simulate the electric field and generate particle tracking for several potential structures. The final photocathode structure has been tailored to meet a set of detector performance requirements, namely, a spatial resolution of <40 µm and a temporal spread of 1-10 ps. We present the details of the geometrically enhanced photocathode model and resulting static field and electron emission characteristics.

18.
Rev Sci Instrum ; 85(11): 11E504, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25430346

RESUMEN

The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

19.
Rev Sci Instrum ; 83(10): 10D311, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126838

RESUMEN

The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve γ-rays in the range of E(o) ± 20% in single shot, where E(o) is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E(o) over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 × 10(14) minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV (12)C γ-rays assuming 200 mg/cm(2) plastic ablator areal density and 3 × 10(15) minimum DT neutrons to measure the 16.75 MeV DT γ-ray line.

20.
Rev Sci Instrum ; 83(10): 10E116, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126938

RESUMEN

As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...