Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945543

RESUMEN

A large number of genomic and imaging datasets are being produced by consortia that seek to characterize healthy and disease tissues at single-cell resolution. While much effort has been devoted to capturing information related to biospecimen information and experimental procedures, the metadata standards that describe data matrices and the analysis workflows that produced them are relatively lacking. Detailed metadata schema related to data analysis are needed to facilitate sharing and interoperability across groups and to promote data provenance for reproducibility. To address this need, we developed the Matrix and Analysis Metadata Standards (MAMS) to serve as a resource for data coordinating centers and tool developers. We first curated several simple and complex "use cases" to characterize the types of feature-observation matrices (FOMs), annotations, and analysis metadata produced in different workflows. Based on these use cases, metadata fields were defined to describe the data contained within each matrix including those related to processing, modality, and subsets. Suggested terms were created for the majority of fields to aid in harmonization of metadata terms across groups. Additional provenance metadata fields were also defined to describe the software and workflows that produced each FOM. Finally, we developed a simple list-like schema that can be used to store MAMS information and implemented in multiple formats. Overall, MAMS can be used as a guide to harmonize analysis-related metadata which will ultimately facilitate integration of datasets across tools and consortia. MAMS specifications, use cases, and examples can be found at https://github.com/single-cell-mams/mams/.

2.
J Exp Psychol Appl ; 28(3): 509-524, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35201841

RESUMEN

In a preregistered experiment, we presented participants with information about the safety of traveling during a deadly pandemic and during a migration trip using five different sources (a news article, a family member, an official organization, someone with personal experience, and the travel organizer) and four different verbal descriptions of the likelihood of safety (very likely, likely, unlikely, and very unlikely). We found that both for the pandemic and migration contexts, judgments about the likelihood of safely traveling and decisions to travel were most strongly influenced by information from the respective official organizations and that participants also indicated greater willingness to share information from official organizations with others. These results are consistent with the established finding that expert sources are more persuasive. However, we also found that, regardless of source, participants thought that it would be safe to travel even when told that it was unlikely or very unlikely to be safe. Additionally, participants did not discriminate between the grades of likelihood description (such as between likely and very likely or between unlikely and very unlikely), suggesting that in the contexts examined directionality matters much more than attempts to communicate more fine-grained likelihood information with verbal phrases. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Asunto(s)
Juicio , Pandemias , Humanos , Comunicación Persuasiva
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580231

RESUMEN

The Late Triassic Carnian Pluvial Episode (CPE) saw a dramatic increase in global humidity and temperature that has been linked to the large-scale volcanism of the Wrangellia large igneous province. The climatic changes coincide with a major biological turnover on land that included the ascent of the dinosaurs and the origin of modern conifers. However, linking the disparate cause and effects of the CPE has yet to be achieved because of the lack of a detailed terrestrial record of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Carnian lake succession of the Jiyuan Basin, North China. New U-Pb zircon dating, high-resolution chemostratigraphy, and palynological and sedimentological data reveal that terrestrial conditions in the region were in remarkable lockstep with the large-scale volcanism. Using the sedimentary mercury record as a proxy for eruptions reveals four discrete episodes during the CPE interval (ca. 234.0 to 232.4 Ma). Each eruptive phase correlated with large, negative C isotope excursions and major climatic changes to more humid conditions (marked by increased importance of hygrophytic plants), lake expansion, and eutrophication. Our results show that large igneous province eruptions can occur in multiple, discrete pulses, rather than showing a simple acme-and-decline history, and demonstrate their powerful ability to alter the global C cycle, cause climate change, and drive macroevolution, at least in the Triassic.


Asunto(s)
Ecosistema , Animales , China , Cambio Climático , Dinosaurios/fisiología , Extinción Biológica , Sedimentos Geológicos/química , Humedad , Isótopos/química , Mercurio/química , Silicatos/química , Temperatura , Erupciones Volcánicas , Circonio/química
4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836571

RESUMEN

Noeggerathiales are enigmatic plants that existed during Carboniferous and Permian times, ∼323 to 252 Mya. Although their morphology, diversity, and distribution are well known, their systematic affinity remained enigmatic because their anatomy was unknown. Here, we report from a 298-My-old volcanic ash deposit, an in situ, complete, anatomically preserved noeggerathialean. The plant resolves the group's affinity and places it in a key evolutionary position within the seed plant sister group. Paratingia wuhaia sp. nov. is a small tree producing gymnospermous wood with a crown of pinnate, compound megaphyllous leaves and fertile shoots each with Ω-shaped vascular bundles. The heterosporous (containing both microspores and megaspores), bisporangiate fertile shoots appear cylindrical and cone-like, but their bilateral vasculature demonstrates that they are complex, three-dimensional sporophylls, representing leaf homologs that are unique to Noeggerathiales. The combination of heterospory and gymnospermous wood confirms that Paratingia, and thus the Noeggerathiales, are progymnosperms. Progymnosperms constitute the seed plant stem group, and Paratingia extends their range 60 My, to the end of the Permian. Cladistic analysis resolves the position of the Noeggerathiales as the most derived members of a heterosporous progymnosperm clade that are the seed plant sister group, altering our understanding of the relationships within the seed plant stem lineage and the transition from pteridophytic spore-based reproduction to the seed. Permian Noeggerathiales show that the heterosporous progymnosperm sister group to seed plants diversified alongside the primary radiation of seed plants for ∼110 My, independently evolving sophisticated cone-like fertile organs from modified leaves.


Asunto(s)
Evolución Biológica , Fósiles , Plantas/embriología , Semillas/crecimiento & desarrollo , Plantas/clasificación
5.
New Phytol ; 229(3): 1782-1794, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32639670

RESUMEN

How plant seeds originated remains unresolved, in part due to disconnects between fossil intermediates and developmental genetics in extant species. The Carboniferous fossil Genomosperma is considered among the most primitive known seeds, with highly lobed integument and exposed nucellus. We have used this key fossil taxon to investigate the evolutionary origins of seed development. We examined sectioned Genomosperma specimens using modern digital 3D reconstruction techniques and established population-level measurements of Genomosperma ovules for quantitative analysis. Genomosperma ovules show significant variation in integumentary lobe fusion and curvature. Our analysis suggests that this variation represents a single species with significant variations in lobe number and fusion, reminiscent of floral development in extant species. We conclude that changes in lobe flexure occurred late in development, consistent with a previously hypothesized function in pollen guidance/retention. We also identify seeds of Genomosperma within cupules for the first time. The presence of a cupule adds evidence towards the plesiomorphy of cupules within seed plants. Together with the similarities identified between the Genomosperma lobed integument and floral organs, we propose that the cupule, integument and nucellus together developed in a shoot-like fashion, potentially ancestral to extant seed plant reproductive shoots.


Asunto(s)
Óvulo Vegetal , Semillas , Fósiles , Polen , Semillas/genética
6.
Nucleic Acids Res ; 48(D1): D882-D889, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31713622

RESUMEN

The Encyclopedia of DNA Elements (ENCODE) is an ongoing collaborative research project aimed at identifying all the functional elements in the human and mouse genomes. Data generated by the ENCODE consortium are freely accessible at the ENCODE portal (https://www.encodeproject.org/), which is developed and maintained by the ENCODE Data Coordinating Center (DCC). Since the initial portal release in 2013, the ENCODE DCC has updated the portal to make ENCODE data more findable, accessible, interoperable and reusable. Here, we report on recent updates, including new ENCODE data and assays, ENCODE uniform data processing pipelines, new visualization tools, a dataset cart feature, unrestricted public access to ENCODE data on the cloud (Amazon Web Services open data registry, https://registry.opendata.aws/encode-project/) and more comprehensive tutorials and documentation.


Asunto(s)
ADN/genética , Bases de Datos Genéticas , Genoma Humano , Programas Informáticos , Animales , Genómica , Humanos , Ratones
7.
Curr Protoc Bioinformatics ; 68(1): e89, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31751002

RESUMEN

The Encyclopedia of DNA Elements (ENCODE) web portal hosts genomic data generated by the ENCODE Consortium, Genomics of Gene Regulation, The NIH Roadmap Epigenomics Consortium, and the modENCODE and modERN projects. The goal of the ENCODE project is to build a comprehensive map of the functional elements of the human and mouse genomes. Currently, the portal database stores over 500 TB of raw and processed data from over 15,000 experiments spanning assays that measure gene expression, DNA accessibility, DNA and RNA binding, DNA methylation, and 3D chromatin structure across numerous cell lines, tissue types, and differentiation states with selected genetic and molecular perturbations. The ENCODE portal provides unrestricted access to the aforementioned data and relevant metadata as a service to the scientific community. The metadata model captures the details of the experiments, raw and processed data files, and processing pipelines in human and machine-readable form and enables the user to search for specific data either using a web browser or programmatically via REST API. Furthermore, ENCODE data can be freely visualized or downloaded for additional analyses. © 2019 The Authors. Basic Protocol: Query the portal Support Protocol 1: Batch downloading Support Protocol 2: Using the cart to download files Support Protocol 3: Visualize data Alternate Protocol: Query building and programmatic access.


Asunto(s)
Cromatina/metabolismo , ADN/genética , Bases de Datos Genéticas , Epigenómica/métodos , Animales , Metilación de ADN , Genoma Humano , Humanos , Internet , Metadatos , Ratones , Programas Informáticos
8.
New Phytol ; 223(1): 83-99, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30681148

RESUMEN

The timing of the origin of angiosperms is a hotly debated topic in plant evolution. Molecular dating analyses that consistently retrieve pre-Cretaceous ages for crown-group angiosperms have eroded confidence in the fossil record, which indicates a radiation and possibly also origin in the Early Cretaceous. Here, we evaluate paleobotanical evidence on the age of the angiosperms, showing how fossils provide crucial data for clarifying the situation. Pollen floras document a Northern Gondwanan appearance of monosulcate angiosperms in the Valanginian and subsequent poleward spread of monosulcates and tricolpate eudicots, accelerating in the Albian. The sequence of pollen types agrees with molecular phylogenetic inferences on the course of pollen evolution, but it conflicts strongly with Triassic and early Jurassic molecular ages, and the discrepancy is difficult to explain by geographic or taphonomic biases. Critical scrutiny shows that supposed pre-Cretaceous angiosperms either represent other plant groups or lack features that might confidently assign them to the angiosperms. However, the record may allow the Late Jurassic existence of ecologically restricted angiosperms, like those seen in the basal ANITA grade. Finally, we examine recently recognized biases in molecular dating and argue that a thoughtful integration of fossil and molecular evidence could help resolve these conflicts.


Asunto(s)
Fósiles , Magnoliopsida/crecimiento & desarrollo , Geografía , Magnoliopsida/ultraestructura , Filogenia , Factores de Tiempo
10.
Nucleic Acids Res ; 46(D1): D794-D801, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126249

RESUMEN

The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center has developed the ENCODE Portal database and website as the source for the data and metadata generated by the ENCODE Consortium. Two principles have motivated the design. First, experimental protocols, analytical procedures and the data themselves should be made publicly accessible through a coherent, web-based search and download interface. Second, the same interface should serve carefully curated metadata that record the provenance of the data and justify its interpretation in biological terms. Since its initial release in 2013 and in response to recommendations from consortium members and the wider community of scientists who use the Portal to access ENCODE data, the Portal has been regularly updated to better reflect these design principles. Here we report on these updates, including results from new experiments, uniformly-processed data from other projects, new visualization tools and more comprehensive metadata to describe experiments and analyses. Additionally, the Portal is now home to meta(data) from related projects including Genomics of Gene Regulation, Roadmap Epigenome Project, Model organism ENCODE (modENCODE) and modERN. The Portal now makes available over 13000 datasets and their accompanying metadata and can be accessed at: https://www.encodeproject.org/.


Asunto(s)
ADN/genética , Bases de Datos Genéticas , Componentes del Gen , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Metadatos , Animales , Caenorhabditis elegans/genética , Presentación de Datos , Conjuntos de Datos como Asunto , Drosophila melanogaster/genética , Predicción , Genoma Humano , Humanos , Ratones/genética , Interfaz Usuario-Computador
11.
Popul Stud (Camb) ; 71(sup1): 85-97, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29061095

RESUMEN

This paper investigates the issues associated with choosing appropriate models of choice for demographic agent-based models. In particular, we discuss the importance of context, time preference, and dealing with uncertainty in decision modelling, as well as the heterogeneity between agents in their decision-making strategies. The paper concludes by advocating empirically driven, modular, and multi-model approaches to designing simulations of human decision-making, given the lack of an agreed strategy for dealing with any of these issues. Furthermore, we suggest that an iterative process of data collection and simulation experiments, with the latter informing future empirical data collection, should form the basis of such an endeavour. The discussion is illustrated with reference to selected demographic agent-based models, with a focus on migration.


Asunto(s)
Conducta de Elección , Toma de Decisiones , Demografía , Conducta , Técnicas de Apoyo para la Decisión , Humanos , Medio Social , Incertidumbre
12.
PeerJ ; 5: e3723, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28875075

RESUMEN

Most knowledge concerning Mesozoic Era floras has come from compression fossils. This has been augmented in the last 20 years by rarer permineralized material showing cellular preservation. Here, we describe a new genus of anatomically preserved gymnosperm seed from the Callovian-Oxfordian (Jurassic) Oxford Clay Formation (UK), using a combination of traditional sectioning and synchrotron radiation X-ray micro-tomography (SRXMT). Oxfordiana motturii gen. et sp. nov. is large and bilaterally symmetrical. It has prominent external ribs, and has a three-layered integument comprising: a narrow outer layer of thick walled cells; a thick middle parenchymatous layer; and innermost a thin fleshy layer. The integument has a longitudinal interior groove and micropyle, enveloping a nucellus with a small pollen chamber. The large size, bilateral symmetry and integumentary groove demonstrate an affinity for the new species within the cycads. Moreover, the internal groove in extant taxa is an autapomorphy of the genus Cycas, where it facilitates seed germination. Based upon the unique seed germination mechanism shared with living species of the Cycadaceae, we conclude that O. motturii is a member of the stem-group lineage leading to Cycas after the Jurassic divergence of the Cycadaceae from other extant cycads. SRXMT-for the first time successfully applied to fossils already prepared as slides-reveals the distribution of different mineral phases within the fossil, and allows us to evaluate the taphonomy of Oxfordiana. An early pyrite phase replicates the external surfaces of individual cells, a later carbonate component infilling void spaces. The resulting taphonomic model suggests that the relatively small size of the fossils was key to their exceptional preservation, concentrating sulfate-reducing bacteria in a locally closed microenvironment and thus facilitating soft-tissue permineralization.

13.
PLoS One ; 12(4): e0175310, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28403240

RESUMEN

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.


Asunto(s)
Bases de Datos Genéticas , Genómica/métodos , Metadatos , Programas Informáticos , Animales , ADN/genética , Genoma , Humanos , Ratones
14.
Am J Bot ; 104(1): 127-149, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28062406

RESUMEN

PREMISE OF THE STUDY: Noeggerathiales are an extinct group of heterosporous shrubs and trees that were widespread and diverse during the Pennsylvanian-Permian Epochs (323-252 Ma) but are of controversial taxonomic affinity. Groups proposed as close relatives include leptosporangiate ferns, sphenopsids, progymnosperms, or the extant eusporangiate fern Tmesipteris. Previously identified noeggerathialeans lacked anatomical preservation, limiting taxonomic comparisons to their external morphology and spore structure. We here document from the upper Permian of China the first anatomically preserved noeggerathialeans, which enhance the perceived distinctiveness of the group and better indicate its systematic affinity. METHODS: We describe in detail the newly discovered, anatomically preserved heterosporous strobilus Dorsalistachya quadrisegmentorum, gen. et sp. nov., and redescribe its suspected foliar correlate, the pinnate leaf Plagiozamites oblongifolius. KEY RESULTS: Plagiozamites possesses an omega (Ω)-shaped vascular trace and prominent cortical secretory cavities-a distinctive anatomical organization that is echoed in the newly discovered strobili. Dorsalistachya strobili bear highly dissected sporophylls alternately in two vertical rows, suggesting that they are homologs of leaf pinnae. If so, the "strobilus" is strictly a pseudostrobilus and consists of sporangium-bearing units that are one hierarchical level below true sporophylls. The "sporophylls" bear four microsporangia on the lower (abaxial) surface, occasionally interspersed with short longitudinal rows of megasporangia. A single functional megaspore develops within each winged megasporangium, suggesting adaptation for dispersal as a single unit. CONCLUSIONS: Dorsalistachya presents a unique combination of reproductive features that amply justifies establishment of a new family, Dorsalistachyaceae. Noeggerathiales represent a distinct taxonomic Order of free-sporing plants that most resembles early-divergent eusporangiate ferns and the more derived among the extinct progymnosperms. By the early Permian, noeggerathialeans had attained levels of reproductive sophistication similar to the most derived among the Paleozoic sphenophytes and lycophytes, but their heterosporous life history may have contributed to their extinction during the Triassic climatic aridification.


Asunto(s)
Fósiles , Hojas de la Planta/anatomía & histología , Plantas/anatomía & histología , Evolución Biológica , China , Geografía , Paleontología/métodos , Estructuras de las Plantas/anatomía & histología , Plantas/clasificación , Reproducción , Factores de Tiempo
15.
PLoS One ; 11(5): e0156034, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27206019

RESUMEN

Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.


Asunto(s)
Proteínas Bacterianas/genética , Cianobacterias/genética , ADN/genética , Fijación del Nitrógeno/genética , Filogenia
16.
PeerJ ; 4: e1700, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26925325

RESUMEN

Background and Aims. The largely Mississippian strata of the Kilpatrick Hills, located at the western end of the Scottish Midland Valley, enclose several macrofossil floras that together contain ca 21 organ-species of permineralised plants and ca 44 organ-species of compressed plants, here estimated to represent 25 whole-plant species (Glenarbuck = nine, Loch Humphrey Burn Lower = 11, Upper = seven). The most significant locality is the internationally important volcanigenic sequence that is reputedly intercalated within the Clyde Plateau Lava Formation at Loch Humphrey Burn, where ca 30 m of reworked tuffs and other clastic sediments enclose one of the world's most important terrestrial lagerstätten of this period. We here explore the palaeoecology and palaeoenvironments of the locality, and elucidate its controversial age. Methods. Repeated re-excavation of key exposures allowed recognition of five main depositional units, differing in thickness from 4 m to 12 m. It also permitted detailed sampling for plant macrofossils and microfossils throughout the succession. Several approaches are integrated to re-assess the taphonomy and preservation of these exceptional plant fossils. Key Results. The deposits are rich in taxonomically diverse miospores and in toto contain at least six well-developed compression floras, together with two beds yielding nodules that enclose well-researched anatomically preserved plants permineralised in calcite. Bulk geochemistry shows that the upper nodules formed by migration of Ca with subordinate Mn and Na. Some phylogenetically important plant fossils recovered in the early 20th century have been traced to their source horizons. Trends in relative proportions of macrofossil and microfossil taxa through the sequence are only moderately congruent, perhaps reflecting the likelihood that microfossils sample the regional rather than the local flora. Conclusions. The Loch Humphrey Burn sequence encompasses a wide range of depositional environments that intercalates high-energy fluvial channels (possibly developed during flash floods in a seasonally arid environment) with lower energy flood plains and a brief lacustrine interval; all yield macrofloras typically dominated by allochthonous pteridosperms. The uppermost unit represents clastic swamps dominated by (hypo)autochthonous lycopsids and ferns s.l., and is tentatively correlated with the entire-reputedly mid-Visean-exposure at nearby Glenarbuck. Other nearby localities with rooted tree-lycopsids appear to have immediately pre-dated the onset of regional volcanism. These interpretations allow revised provenancing and dating of historical collections of key plant fossils. The late Tournaisian date previously attributed on palynological evidence to the lowest unit at Loch Humphrey Burn appears increasingly improbable when our re-appraisal of the macrofloras and microfloras is placed in the context of (a) statistical comparison with other permineralised Mississippian assemblages and (b) recent stratigraphic and geochronologic studies in the region; rather, we ascribe the entire Kilpatrick Hills sequence to the mid-Visean. Stratigraphic and palaeoenvironmental interpretations of the Mississippian rocks of the Kilpatrick Hills have especially profound implications for our understanding of the physical evolution of Scotland during the Variscan orogeny and formation of Pangea.

17.
Artículo en Inglés | MEDLINE | ID: mdl-26980513

RESUMEN

The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center (DCC) is responsible for organizing, describing and providing access to the diverse data generated by the ENCODE project. The description of these data, known as metadata, includes the biological sample used as input, the protocols and assays performed on these samples, the data files generated from the results and the computational methods used to analyze the data. Here, we outline the principles and philosophy used to define the ENCODE metadata in order to create a metadata standard that can be applied to diverse assays and multiple genomic projects. In addition, we present how the data are validated and used by the ENCODE DCC in creating the ENCODE Portal (https://www.encodeproject.org/). Database URL: www.encodeproject.org.


Asunto(s)
Biología Computacional/métodos , ADN/genética , Bases de Datos Genéticas , Algoritmos , Animales , Caenorhabditis elegans , Biología Computacional/normas , Recolección de Datos , Drosophila melanogaster , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Ácidos Nucleicos/genética , Control de Calidad , Reproducibilidad de los Resultados , Alineación de Secuencia
18.
Am J Bot ; 102(6): 942-61, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26101419

RESUMEN

PREMISE OF THE STUDY: Triassic and Jurassic fossils record structural changes in conifer seed cones through time, provide the earliest evidence for crown-group conifer clades, and further clarify sister-group relationships of modern conifer families. A new and distinct seed-cone from the Isle of Skye in western Scotland provides the oldest detailed evidence for the ancestral morphology of the phylogenetically contentious family Cupressaceae. METHODS: A single isolated cone was prepared as serial sections by the cellulose acetate peel technique, mounted on microscope slides, and viewed and photographed using transmitted light. The three-dimensional structure of the cone was first reconstructed from the serial sections and then refined through imaging with x-ray microtomography. KEY RESULTS: Scitistrobus duncaanensis, gen. et sp. nov., is a 7.5 mm-diameter cylindrical seed cone with helically arranged bract-scale complexes in which three scale tips separate from a large bract, each tip bearing one adaxial seed. Seeds are near-inverted, show 180° rotational symmetry, and have a diminutive wing in the major plane. CONCLUSIONS: Scitistrobus duncaanensis extends the fossil record for anatomically preserved seed cones of the Cupressaceae backward from the Upper Jurassic to the Aalenian Stage of the Middle Jurassic. The cone displays a previously unknown combination of characters that we regard as diagnostic for seed cones of early-divergent Cupressaceae and helps to clarify the sequence of structural changes that occurred during the transition from ancestral voltzialean conifers to morphologically recognizable Cupressaceae. Hypotheses of homology underpinning such transformational series can be tested by ongoing reciprocal illumination between the morphology of fossil taxa and the morphogenesis and developmental genetics of their extant crown-group relatives.


Asunto(s)
Evolución Biológica , Cupressaceae/genética , Fósiles , Semillas/genética , Cupressaceae/anatomía & histología , Cupressaceae/clasificación , Geografía , Morfogénesis , Filogenia , Escocia , Semillas/anatomía & histología , Factores de Tiempo
19.
ISME J ; 9(7): 1557-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25514535

RESUMEN

Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities.


Asunto(s)
Cianobacterias/metabolismo , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Ríos/microbiología , Agua de Mar/microbiología , Cianobacterias/genética , Diatomeas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Fijación del Nitrógeno/genética , Ríos/química , Agua de Mar/química , Transcriptoma
20.
PeerJ ; 2: e624, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25374776

RESUMEN

We document a new species of ovulate cone (Pararaucaria collinsonae) on the basis of silicified fossils from the Late Jurassic Purbeck Limestone Group of southern England (Tithonian Stage: ca. 145 million years). Our description principally relies on the anatomy of the ovuliferous scales, revealed through X-ray synchrotron microtomography (SRXMT) performed at the Diamond Light Source (UK). This study represents the first application of SRXMT to macro-scale silicified plant fossils, and demonstrates the significant advantages of this approach, which can resolve cellular structure over lab-based X-ray computed microtomography (XMT). The method enabled us to characterize tissues and precisely demarcate their boundaries, elucidating organ shape, and thus allowing an accurate assessment of affinities. The cones are broadly spherical (ca. 1.3 cm diameter), and are structured around a central axis with helically arranged bract/scale complexes, each of which bares a single ovule. A three-lobed ovuliferous scale and ovules enclosed within pocket-forming tissue, demonstrate an affinity with Cheirolepidiaceae. Details of vascular sclerenchyma bundles, integument structure, and the number and attachment of the ovules indicate greatest similarity to P. patagonica and P. carrii. This fossil develops our understanding of the dominant tree element of the Purbeck Fossil Forest, providing the first evidence for ovulate cheirolepidiaceous cones in Europe. Alongside recent discoveries in North America, this significantly extends the known palaeogeographic range of Pararaucaria, supporting a mid-palaeolatitudinal distribution in both Gondwana and Laurasia during the Late Jurassic. Palaeoclimatic interpretations derived from contemporaneous floras, climate sensitive sediments, and general circulation climate models indicate that Pararaucaria was a constituent of low diversity floras in semi-arid Mediterranean-type environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...