Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 278: 153829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36202058

RESUMEN

Climate change and agricultural malpractices are exacerbating drought in many parts of the world causing a substantial agricultural production loss. The improvement of drought tolerance in rice is crucial for maintaining productivity and ensuring global food security. Alternate wetting and drying (AWD) irrigation along with plant-microbe interaction through arbuscular mycorrhizal fungi (AMF) is a potential approach for enhancing rice production through AMF-induced up-regulation of tolerance and resilience against drought stress. Therefore, the ameliorative role of AMF inoculation and phosphorus (P) application on growth, physiological traits, and grain yield of rice was evaluated under water stress imposed through AWD irrigation. A factorial experiment consisting of four fertilizer treatments where the P percentage varied along with the recommended dose of nitrogen (N) with or without AMF inoculation (P100 as the control, P100 + AMF, P75 + AMF, and P50 + AMF), three soil water potential levels (0, -15, and -30 kPa), and two cultivation methods (wet direct seeding and transplanting) was conducted in a polyhouse. The subscript values of 100, 75, and 50 under P represent 100%, 75%, and 50% of the recommended field application dose. Data were collected on selected growth parameters, physiological traits, levels of mycorrhizal colonization, yield and its components, and water productivity of rice. The results revealed that P100 + AMF inoculated plants had 11%, 14%, 74%, and 54% higher leaf greenness, leaf relative water content, net photosynthetic rate, and grain yield, respectively, for wet direct-seeded plants at reduced soil water potential (-30 kPa) compared with non-inoculated plants (P100). Free proline accumulation gradually enhanced with decreasing soil water potential, and it was maximized by 77% at -30 kPa compared with 0 kPa for P50 + AMF (for transplanted plants). Free proline accumulation was also higher with decreasing soil water potential in AMF-inoculated plants than non-inoculated plants regardless of cultivation methods. Leaf osmotic potential was reduced by -0.5 to -1.2 MPa at -30 kPa compared with 0 kPa under different fertilizer doses. However, AMF inoculation (P100 + AMF and P75 + AMF) improved leaf osmotic potential of plants under severe water stress (-30 kPa) maintained through AWD irrigation resulting in better osmotic adjustment than non-inoculated plants. AMF inoculation improved the response of most of the evaluated physiological traits of rice and enhanced grain yield with higher P availability (even with a 25% reduction in its recommended dose) in the rhizosphere under drought stress. Thus, it can be concluded that AMF inoculation coupled with judicious P management is a promising approach for improving physiological and biochemical traits, grain yield, and water productivity of rice under AWD irrigation regardless of cultivation methods.


Asunto(s)
Micorrizas , Oryza , Deshidratación , Grano Comestible , Fertilizantes , Micorrizas/fisiología , Nitrógeno , Oryza/fisiología , Fósforo , Prolina , Suelo
2.
Sci Rep ; 11(1): 20102, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635701

RESUMEN

Determining optimum irrigation termination periods for cotton (Gossypium hirsutum L.) is crucial for efficient utilization and conservation of finite groundwater resources of the Ogallala Aquifer in the Texas High Plains (THP) region. The goal of this study was to suggest optimum irrigation termination periods for different Evapotranspiration (ET) replacement-based irrigation strategies to optimize cotton yield and irrigation water use efficiency (IWUE) using the CROPGRO-Cotton model. We re-evaluated a previously evaluated CROPGRO-Cotton model using updated yield and in-season physiological data from 2017 to 2019 growing seasons from an IWUE experiment at Halfway, TX. The re-evaluated model was then used to study the effects of combinations of irrigation termination periods (between August 15 and September 30) and deficit/excess irrigation strategies (55%-115% ET-replacement) under dry, normal and wet years using weather data from 1978 to 2019. The 85% ET-replacement strategy was found ideal for optimizing irrigation water use and cotton yield, and the optimum irrigation termination period for this strategy was found to be the first week of September during dry and normal years, and the last week of August during wet years. Irrigation termination periods suggested in this study are useful for optimizing cotton production and IWUE under different levels of irrigation water availability.


Asunto(s)
Riego Agrícola/métodos , Gossypium/crecimiento & desarrollo , Agua Subterránea , Fotosíntesis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA