Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470914

RESUMEN

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Asunto(s)
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , ARN Interferente Pequeño , Variaciones en el Número de Copia de ADN , Secuencias Repetidas Terminales/genética , Filogenia , Evolución Molecular
2.
bioRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38234754

RESUMEN

Eukaryotes must balance the need for gene transcription by RNA polymerase II (Pol II) against the danger of mutations caused by transposable element (TE) proliferation. In plants, these gene expression and TE silencing activities are divided between different RNA polymerases. Specifically, RNA polymerase IV (Pol IV), which evolved from Pol II, transcribes TEs to generate small interfering RNAs (siRNAs) that guide DNA methylation and block TE transcription by Pol II. While the Pol IV complex is recruited to TEs via SNF2-like CLASSY (CLSY) proteins, how Pol IV partners with the CLSYs remains unknown. Here we identified a conserved CYC-YPMF motif that is specific to Pol IV and is positioned on the complex exterior. Furthermore, we found that this motif is essential for the co-purification of all four CLSYs with Pol IV, but that only one CLSY is present in any given Pol IV complex. These findings support a "one CLSY per Pol IV" model where the CYC-YPMF motif acts as a CLSY-docking site. Indeed, mutations in and around this motif phenocopy pol iv null mutants. Together, these findings provide structural and functional insights into a critical protein feature that distinguishes Pol IV from other RNA polymerases, allowing it to promote genome stability by targeting TEs for silencing.

3.
Methods Mol Biol ; 2166: 387-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710422

RESUMEN

Cells have sophisticated RNA-directed mechanisms to regulate genes, destroy viruses, or silence transposable elements (TEs). In terrestrial plants, a specialized non-coding RNA machinery involving RNA polymerase IV (Pol IV) and small interfering RNAs (siRNAs) targets DNA methylation and silencing to TEs. Here, we present a bioinformatics protocol for annotating and quantifying siRNAs that derive from long terminal repeat (LTR) retrotransposons. The approach was validated using small RNA northern blot analyses, comparing the species Arabidopsis thaliana and Brachypodium distachyon. To assist hybridization probe design, we configured a genome browser to show small RNA-seq mappings in distinct colors and shades according to their nucleotide lengths and abundances, respectively. Samples from wild-type and pol IV mutant plants, cross-species negative controls, and a conserved microRNA control validated the detected siRNA signals, confirming their origin from specific TEs and their Pol IV-dependent biogenesis. Moreover, an optimized labeling method yielded probes that could detect low-abundance siRNAs from B. distachyon TEs. The integration of de novo TE annotation, small RNA-seq profiling, and northern blotting, as outlined here, will facilitate the comparative genomic analysis of RNA silencing in crop plants and non-model species.


Asunto(s)
Arabidopsis/genética , Northern Blotting/métodos , Brachypodium/genética , Genoma de Planta , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Retroelementos/genética , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario/genética , RNA-Seq , Secuencias Repetidas Terminales/genética
4.
Nucleic Acids Res ; 47(17): 9037-9052, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31372633

RESUMEN

RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV's largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Regulación de la Expresión Génica de las Plantas , Secuencias de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Metilación de ADN/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Silenciador del Gen , Genoma de Planta , Plantas Modificadas Genéticamente , Dominios Proteicos/genética , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Retroelementos/genética
12.
Methods Mol Biol ; 1217: 275-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25287210

RESUMEN

RNA silencing is a regulatory mechanism that controls the expression of endogenous genes and exogenous molecular parasites such as viruses, transgenes, and transposable elements. The sequence specificity of these processes relies on small noncoding RNA (sRNA) molecules. In plants, one of the most fascinating aspects of RNA silencing is its mobile nature, in other words its ability to spread from the cell where it has been initiated to neighboring cells, through movement of sRNA molecules. To study this process, a key step is to directly monitor the spread of these nucleic acid species. Here we describe how this can be achieved through biolistic delivery of fluorescently labeled siRNA.


Asunto(s)
Arabidopsis/metabolismo , Biolística/métodos , Interferencia de ARN , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Biolística/instrumentación , Transporte Biológico , Elementos Transponibles de ADN , Colorantes Fluorescentes/química , Oro/química , Nanopartículas del Metal/química , ARN de Planta/genética , ARN Interferente Pequeño/genética , Plantones/genética , Semillas/genética , Coloración y Etiquetado/métodos
13.
PLoS One ; 8(12): e82652, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376561

RESUMEN

RNA silencing is a natural defence mechanism against viruses in plants, and transgenes expressing viral RNA-derived sequences were previously shown to confer silencing-based enhanced resistance against the cognate virus in several species. However, RNA silencing was shown to dysfunction at low temperatures in several species, questioning the relevance of this strategy in perennial plants such as grapevines, which are often exposed to low temperatures during the winter season. Here, we show that inverted-repeat (IR) constructs trigger a highly efficient silencing reaction in all somatic tissues in grapevines. Similarly to other plant species, IR-derived siRNAs trigger production of secondary transitive siRNAs. However, and in sharp contrast to other species tested to date where RNA silencing is hindered at low temperature, this process remained active in grapevine cultivated at 4°C. Consistently, siRNA levels remained steady in grapevines cultivated between 26°C and 4°C, whereas they are severely decreased in Arabidopsis grown at 15°C and almost undetectable at 4°C. Altogether, these results demonstrate that RNA silencing operates in grapevine in a conserved manner but is resistant to far lower temperatures than ever described in other species.


Asunto(s)
Frío , Interferencia de ARN , Vitis/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , División Celular/genética , Proteínas Fluorescentes Verdes/metabolismo , Secuencias Invertidas Repetidas/genética , Plantas Modificadas Genéticamente , ARN Interferente Pequeño/metabolismo , Transgenes/genética , Vitis/crecimiento & desarrollo
14.
EMBO J ; 31(11): 2553-65, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22531783

RESUMEN

Plant viruses encode RNA silencing suppressors (VSRs) to counteract the antiviral RNA silencing response. Based on in-vitro studies, several VSRs were proposed to suppress silencing through direct binding of short-interfering RNAs (siRNAs). Because their expression also frequently hinders endogenous miRNA-mediated regulation and stabilizes labile miRNA* strands, VSRs have been assumed to prevent both siRNA and miRNA loading into their common effector protein, AGO1, through sequestration of small RNA (sRNA) duplexes in vivo. These assumptions, however, have not been formally tested experimentally. Here, we present a systematic in planta analysis comparing the effects of four distinct VSRs in Arabidopsis. While all of the VSRs tested compromised loading of siRNAs into AGO1, only P19 was found to concurrently prevent miRNA loading, consistent with a VSR strategy primarily based on sRNA sequestration. By contrast, we provide multiple lines of evidence that the action of the other VSRs tested is unlikely to entail siRNA sequestration, indicating that in-vitro binding assays and in-vivo miRNA* stabilization are not reliable indicator of VSR action. The contrasted effects of VSRs on siRNA versus miRNA loading into AGO1 also imply the existence of two distinct pools of cellular AGO1 that are specifically loaded by each class of sRNAs. These findings have important implications for our current understanding of RNA silencing and of its suppression in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Virus de Plantas/metabolismo , ARN Interferente Pequeño/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Interferencia de ARN , ARN de Planta/metabolismo
15.
EMBO J ; 29(10): 1699-712, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20414198

RESUMEN

Recent work on metazoans has uncovered the existence of an endogenous RNA-silencing pathway that functionally recapitulates the effects of experimental RNA interference (RNAi) used for gene knockdown in organisms such as Caenorhabditis elegans and Drosophila. The endogenous short interfering (si)RNA involved in this pathway are processed by Dicer-like nucleases from genomic loci re-arranged to form extended inverted repeats (IRs) that produce perfect or near-perfect dsRNA molecules. Although such IR loci are commonly detected in plant genomes, their genetics, evolution and potential contribution to plant biology through endogenous silencing have remained largely unexplored. Through an exhaustive analysis performed using Arabidopsis, we provide here evidence that at least two such endogenous IRs are genetically virtually indistinguishable from the transgene constructs commonly used for RNAi in plants. We show how these loci can be useful probes of the cellular mechanism and fluidity of RNA-silencing pathways in plants, and provide evidence that they may arise and disappear on an ecotype scale, show highly cell-specific expression patterns and respond to various stresses. IR loci thus have the potential to act as molecular sensors of the local environments found within distinct ecological plant niches. We further show that the various siRNA size classes produced by at least one of these IR loci are functionally loaded into cognate effector proteins and mediate both post-transcriptional gene silencing and RNA-directed DNA methylation (RdDM) of endogenous as well as exogenous targets. Finally, and as previously reported during plant experimental RNAi, we provide evidence that endogenous IR-derived siRNAs of all size classes are not cell-autonomous and can be transported through graft junctions over long distances, in target tissues where they are functional, at least in mediating RdDM. Collectively, these results define the existence of a bona fide, endogenous and systemic RNAi pathway in plants that may have implications in adaptation, epiallelism and trans-generational memory.


Asunto(s)
Arabidopsis/genética , Plantas/genética , Interferencia de ARN , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/metabolismo , Caenorhabditis elegans , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN , Drosophila , Silenciador del Gen , Datos de Secuencia Molecular , Mutación , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética , Transgenes
16.
Science ; 328(5980): 912-6, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20413458

RESUMEN

In the plant RNA interference (RNAi) pathway, 21-nucleotide duplexes of small interfering RNA (siRNA) are processed from longer double-stranded RNA precursors by the RNaseIII Dicer-like 4 (DCL4). Single-stranded siRNAs then guide Argonaute 1 (AGO1) to execute posttranscriptional silencing of complementary target RNAs. RNAi is not cell-autonomous in higher plants, but the nature of the mobile nucleic acid(s) signal remains unknown. Using cell-specific rescue of DCL4 function and cell-specific inhibition of RNAi movement, we genetically establish that exogenous and endogenous siRNAs, as opposed to their precursor molecules, act as mobile silencing signals between plant cells. We further demonstrate physical movement of mechanically delivered, labeled siRNA duplexes that functionally recapitulate transgenic RNAi spread. Cell-to-cell movement is unlikely to involve AGO1-bound siRNA single strands, but instead likely involves siRNA duplexes.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Interferencia de ARN , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Precursores del ARN/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN de Planta/genética , ARN Interferente Pequeño/genética , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transformación Genética
17.
EMBO J ; 27(15): 2102-12, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18615098

RESUMEN

Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-alpha-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function.


Asunto(s)
Arabidopsis/fisiología , Caulimovirus/fisiología , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/fisiología , Interferencia de ARN/fisiología , Proteínas de Unión al ARN/fisiología , Proteínas Virales/fisiología , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Arabidopsis/virología , Citoplasma/metabolismo , Cuerpos de Inclusión Viral/fisiología , Datos de Secuencia Molecular , Mutación , Señales de Localización Nuclear/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa III , Ribonucleasas/fisiología , Replicación Viral/fisiología
18.
RNA ; 13(8): 1268-78, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17592042

RESUMEN

In plants, worms, and fungi, RNA-dependent RNA polymerases (RDRs) amplify the production of short-interfering RNAs (siRNAs) that mediate RNA silencing. In Arabidopsis, RDR6 is thought to copy endogenous and exogenous RNA templates into double-stranded RNAs (dsRNAs), which are subsequently processed into siRNAs by one or several of the four Dicer-like enzymes (DCL1-->4). This reaction produces secondary siRNAs corresponding to sequences outside the primary targeted regions of a transcript, a phenomenon called transitivity. One recognized role of RDR6 is to strengthen the RNA silencing response mounted by plants against viruses. Accordingly, suppressor proteins deployed by viruses inhibit this defense. However, interactions between silencing suppressors and RDR6 have not yet been documented. Additionally, the mechanism underlying transitivity remains poorly understood. Here, we report how several viral silencing suppressors inhibit the RDR6-dependent amplification of virus-induced and transgene-induced gene silencing. Viral suppression of primary siRNA accumulation shows that transitivity can be initiated with minute amounts of DCL4-dependent 21-nucleotide (nt)-long siRNAs, whereas DCL3-dependent 24-nt siRNAs appear dispensable for this process. We further show that unidirectional (3-->5') transitivity requires the hierarchical and redundant functions of DCL4 and DCL2 acting downstream from RDR6 to produce 21- and 22-nt-long siRNAs, respectively. The 3-->5' transitive reaction is likely to be processive over >750 nt, with secondary siRNA production progressively decreasing as the reaction proceeds toward the 5'-proximal region of target transcripts. Finally, we show that target cleavage by a primary small RNA and 3-->5' transitivity can be genetically uncoupled, and we provide in vivo evidence supporting a key role for priming in this specific reaction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Interferencia de ARN , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasa III/metabolismo , Ribonucleasas/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Arabidopsis/metabolismo , Virus de Plantas/química , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
19.
Nat Genet ; 39(7): 848-56, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17558406

RESUMEN

In RNA interference (RNAi), double-stranded RNA (dsRNA) is processed into short interfering RNA (siRNA) to mediate sequence-specific gene knockdown. The genetics of plant RNAi is not understood, nor are the bases for its spreading between cells. Here, we unravel the requirements for biogenesis and action of siRNAs directing RNAi in Arabidopsis thaliana and show how alternative routes redundantly mediate this process under extreme dsRNA dosages. We found that SMD1 and SMD2, required for intercellular but not intracellular RNAi, are allelic to RDR2 and NRPD1a, respectively, previously implicated in siRNA-directed heterochromatin formation through the action of DCL3 and AGO4. However, neither DCL3 nor AGO4 is required for non-cell autonomous RNAi, uncovering a new pathway for RNAi spreading or detection in recipient cells. Finally, we show that the genetics of RNAi is distinct from that of antiviral silencing and propose that this experimental silencing pathway has a direct endogenous plant counterpart.


Asunto(s)
Arabidopsis/genética , Heterocromatina/fisiología , MicroARNs/fisiología , Interferencia de ARN/fisiología , Transducción de Señal/genética , Arabidopsis/citología , Arabidopsis/fisiología , Líquido Extracelular/fisiología , Líquido Intracelular/fisiología
20.
Nat Genet ; 38(2): 258-63, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16429161

RESUMEN

Regulation of gene expression through microRNAs (miRNAs) and antiviral defense through small interfering RNAs (siRNAs) are aspects of RNA silencing, a process originally discovered as an unintended consequence of plant transformation by disarmed Agrobacterium tumefaciens strains. Although RNA silencing protects cells against foreign genetic elements, its defensive role against virulent, tumor-inducing bacteria has remained unexplored. Here, we show that siRNAs corresponding to transferred-DNA oncogenes initially accumulate in virulent A. tumefaciens-infected tissues and that RNA interference-deficient plants are hypersusceptible to the pathogen. Successful infection relies on a potent antisilencing state established in tumors whereby siRNA synthesis is specifically inhibited. This inhibition has only modest side effects on the miRNA pathway, shown here to be essential for disease development. The similarities and specificities of the A. tumefaciens RNA silencing interaction are discussed and contrasted with the situation encountered with plant viruses.


Asunto(s)
Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/patogenicidad , Regulación Bacteriana de la Expresión Génica , Tumores de Planta/microbiología , Interferencia de ARN , Arabidopsis/microbiología , Intrones/genética , MicroARNs/genética , Mutación/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/microbiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Tallos de la Planta/anatomía & histología , Tallos de la Planta/microbiología , Tumores de Planta/genética , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Nicotiana/microbiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA