Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(7): 885-888, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38165285

RESUMEN

Dehydrogenation of ammonia borane to well-defined products is an important but challenging reaction. A dinuclear ruthenium complex with a Ru-Ru bond bearing a diazadiene (dad) unit and olefins as non-innocent ligands catalyzes the highly selective formation of conjugated polycondensed borazine oligomers (BxNxHy), predominantly B21N21H18, the BN analogue of superbenzene.

2.
Monatsh Chem ; 154(11): 1253-1262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927400

RESUMEN

Treatment of [Co2(CO)8] with the ipso-substituted P(C-X)PY ligands (X = Br, Cl; R = iPr, tBu) bearing Y = NH and CH2 linkers under solvothermal conditions affords the five-coordinate Co(I) and Co(III) complexes [CoI(PCPY-R)(CO)2] and [CoIII(PCPY-R)X2]. The later are paramagnetic exhibiting a solution magnetic moment in the range of 3.0-3.3 µB which is consistent with a d6 intermediate spin system corresponding to two unpaired electrons. In the case of P(C-X)PY ligands (X = Br, Cl; R = tBu; Y = NH) the formation of the square planar Co(II) complex [Co(PCPNH-tBu)X] was favored. This complex gives rise to a magnetic moment of 1.8 µB being consistent with a d7 low spin system corresponding to one unpaired electron. All complexes are characterized by means of spectroscopic techniques (NMR, IR), HR-MS. Representative complexes were also characterized by X-ray crystallography. Supplementary Information: The online version contains supplementary material available at 10.1007/s00706-023-03123-x.

3.
Chemistry ; 29(29): e202300094, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36866600

RESUMEN

The synthesis of imines denotes a cornerstone in organic chemistry. The use of alcohols as renewable substituents for carbonyl-functionality represents an attractive opportunity. Consequently, carbonyl moieties can be in situ generated from alcohols upon transition-metal catalysis under inert atmosphere. Alternatively, bases can be utilized under aerobic conditions. In this context, we report the synthesis of imines from benzyl alcohols and anilines, promoted by KOt Bu under aerobic conditions at room temperature, in the absence of any transition-metal catalyst. A detailed investigation of the radical mechanism of the underlying reaction is presented. This reveals a complex reaction network fully supporting the experimental findings.

4.
Dalton Trans ; 50(39): 13915-13924, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34528031

RESUMEN

The syntheses of various manganese and iron PCP pincer complexes via a solvothermal oxidative addition methodology is described. Upon reacting [Mn2(CO)10] with the ligands (P(C-Br)PCH2-iPr) (1a) and (P(C-Br)PO-iPr) (1b), Mn(I) PCP pincer complexes [Mn(PCPCH2-iPr)(CO)3] (2a) and [Mn(-PCPO-iPr)(CO)3] (2b) were obtained. Protonation of 2a with HBF4·Et2O led to the formation of [Mn(κ3P,CH,P-P(CH)PCH2-iPr)(CO)3]BF4 (3) featuring an η2-Caryl-H agostic bond. The solvothermal reaction of 1a with [Fe2(CO)9] afforded the Fe(II) PCP pincer complex [Fe(PCPCH2-iPr)(CO)2Br] (4). Treatment of 4 with Li[HBEt3] afforded the Fe(I) complex [Fe(PCPCH2-iPr)(CO)2] (5a). When using the sterically more demanding ligands (P(C-Br)PCH2-tBu) (1c) and (P(C-Br)PO-tBu)(1d) striking differences in reactivity were observed. While neither 1c nor 1d showed any reactivity towards [Mn2(CO)10], the reaction with [Fe2(CO)9] and [Fe(CO)5] led to the formation of the Fe(I) complexes [Fe(PCPCH2-tBu)(CO)2] (5b) and [Fe(PCPO-tBu)(CO)2] (5c). X-ray structures of representative complexes are provided.

5.
Inorg Chem ; 57(13): 7925-7931, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29926720

RESUMEN

In the current investigation, the reaction of Fe2(CO)9 with the ligand precursor 2-chloro-N1,N3-bis(diisopropylphosphanyl)-N1,N3-diethylbenzene-1,3-diamine (P(C-Cl)PNEt- iPr) (1) was investigated. When a suspension of Fe2(CO)9 and 1 in CH3CN was transferred in a sealed microwave glass vial and stirred for 18 h at 110 °C the complex [Fe(PCPNEt- iPr)(CO)2Cl] (2) was obtained. In an attempt to prepare the hydride Fe(II) complex [Fe(PCPNEt- iPr)(CO)2H] (3), 2 was reacted with 1 equiv of Li[HBEt3] in THF. Instead of ligand substitution, this complex underwent a one electron reduction which led to the formation of the low-spin d7 Fe(I) complex [Fe(PCPNEt- iPr)(CO)2] (4). Exposure of a benzene solution of 4 to NO gas (1 bar) at room temperature affords the diamagnetic complex [Fe(PCPNEt- iPr)(CO)(NO)] (5). This is the first iron PCP nitrosyl complex. Protonation of 5 with HBF4·Et2O affords the cationic Fe(0) complex [Fe(κ3 P,CH,P-P(CH)PNEt- iPr)(CO)(NO)]BF4 (6) which features an η2-Caryl-H agostic bond. Even with relatively weak bases such as NEt3 the agostic C-H bond can be deprotonated with reformation of the starting material 5. Therefore, protonation of 5 is completely reversible.

6.
ACS Catal ; 8(5): 4009-4016, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29755828

RESUMEN

Several hydride Mn(I) and Re(I) PNP pincer complexes were applied as catalysts for the homogeneous chemoselective hydrogenation of aldehydes. Among these, [Mn(PNP-iPr)(CO)2(H)] was found to be one of the most efficient base metal catalysts for this process and represents a rare example which permits the selective hydrogenation of aldehydes in the presence of ketones and other reducible functionalities, such as C=C double bonds, esters, or nitriles. The reaction proceeds at room temperature under base-free conditions with catalyst loadings between 0.1 and 0.05 mol% and a hydrogen pressure of 50 bar (reaching TONs of up to 2000). A mechanism which involves an outer-sphere hydride transfer and reversible PNP ligand deprotonation/protonation is proposed. Analogous isoelectronic and isostructural Re(I) complexes were only poorly active.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...