Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Geohealth ; 7(10): e2023GH000887, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37885913

RESUMEN

The increasing prevalence of warmer trends and climate extremes exacerbate the population's exposure to urban settlements. This work investigated population exposure changes to mean and extreme climate events in different Agro-Ecological Zones (AEZs) of Pakistan and associated mechanisms (1979-2020). Spatiotemporal trends in mean and extreme temperatures revealed significant warming mainly over northern, northeastern, and southern AEZs. In contrast, mean-to-extreme precipitation changes showed non-uniform patterns with a significant increase in the northeast AEZs. Population exposure to mean (extreme) temperature and precipitation events increased two-fold during 2000-2020. The AEZs in urban settlements (i.e., Indus Delta, Northern Irrigated Plain, and Barani/Rainfall) show a maximum exposure to extreme temperatures of about 70-100 × 106 (person-days) in the reference period (1979-1999), which increases to 140-200 × 106 person-days in the recent period (2000-2020). In addition, the highest exposure to extreme precipitation days also increases to 40-200 × 106 person-days during 2000-2020 than 1979-1999 (20-100 × 106) person-days. Relative changes in exposure are large (60%-90%) for the AEZs across northeast Pakistan, justifying the spatial population patterns over these zones. Overall, the observed changes in exposure are primarily attributed to the climate effect (50%) over most AEZs except Northern Irrigated Plain for R10 and R20 events, where the interaction effect takes the lead. The population exposure rapidly increased over major AEZs of Pakistan, which could be more vulnerable to extreme events due to rapid urbanization and population growth in the near future.

2.
Environ Monit Assess ; 188(5): 267, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27048492

RESUMEN

Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Materiales de Construcción , Monitoreo del Ambiente , Fotosíntesis/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Triticum/efectos de los fármacos , Agricultura , Contaminación del Aire/análisis , Gases , Industrias , Metales , Pakistán , Triticum/crecimiento & desarrollo
3.
Environ Technol ; 37(16): 2082-7, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26776601

RESUMEN

The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.


Asunto(s)
Biocombustibles , Ácidos Grasos/química , Residuos Industriales , Eliminación de Residuos Líquidos/métodos , Esterificación , Cinética , Aceites de Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA