Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 149(15): 154305, 2018 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-30342450

RESUMEN

New photoresists are needed to advance extreme ultraviolet (EUV) lithography. The tailored design of efficient photoresists is enabled by a fundamental understanding of EUV induced chemistry. Processes that occur in the resist film after absorption of an EUV photon are discussed, and a new approach to study these processes on a fundamental level is described. The processes of photoabsorption, electron emission, and molecular fragmentation were studied experimentally in the gas-phase on analogs of the monomer units employed in chemically amplified EUV resists. To demonstrate the dependence of the EUV absorption cross section on selective light harvesting substituents, halogenated methylphenols were characterized employing the following techniques. Photoelectron spectroscopy was utilized to investigate kinetic energies and yield of electrons emitted by a molecule. The emission of Auger electrons was detected following photoionization in the case of iodo-methylphenol. Mass-spectrometry was used to deduce the molecular fragmentation pathways following electron emission and atomic relaxation. To gain insight on the interaction of emitted electrons with neutral molecules in a condensed film, the fragmentation pattern of neutral gas-phase molecules, interacting with an electron beam, was studied and observed to be similar to EUV photon fragmentation. Below the ionization threshold, electrons were confirmed to dissociate iodo-methylphenol by resonant electron attachment.

2.
Phys Chem Chem Phys ; 19(9): 6814-6830, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28218326

RESUMEN

Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. In previous work, we have reported a computational study of the oxidation chemistry of a liquid aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. These results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.

3.
ACS Nano ; 4(8): 4815-23, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20731456

RESUMEN

We report novel strategies to integrate block copolymer self-assembly with 193 nm water immersion lithography. These strategies employ commercially available positive tone chemically amplified photoresists to spatially encode directing information into precise topographical or chemical prepatterns for the directed self-assembly of block copolymers. Each of these methods exploits the advantageous solubility and thermal properties of polarity-switched positive tone photoresist materials. Precisely registered, sublithographic self-assembled structures are fabricated using these versatile integration schemes which are fully compatible with current optical lithography patterning materials, processes, and tooling.

5.
Nano Lett ; 5(10): 2014-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16218729

RESUMEN

Coassemblies of block copolymers and inorganic precursors offer a path to ordered inorganic nanostructures. In thin films, these materials combined with domain alignment provide highly robust nanoscopic templates. We report a simple path to control the morphology, scaling, and orientation of ordered mesopores in organosilicate thin films through the coassembly of a diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric organosilicate precursor that is selectively miscible with PEO. Continuous films containing cylindrical or spherical pores are generated by varying the mixing composition of symmetric PS-b-PEO and an organosilicate precursor. Tuning interfacial energy at both air/film and film/substrate interfaces allows the control of cylindrical pore orientation normal to the supported film surfaces. Our method provides well-ordered mesoporous structures within organosilicate thin films that find broad applications as highly stable nanotemplates.

6.
Anal Chem ; 74(1): 125-31, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11795780

RESUMEN

Using a combination of the quartz crystal microbalance and a corresponding physical model for the compound resonator, the viscoelastic properties of polymer films have been studied. By using a compensated phase-locked oscillator system, both resonant frequency and resistance (motional resistance of the Butterworth-Van Dyke equivalent circuit) can be measured simultaneously. The behavior of resistance as a function of film thickness or corresponding frequency shift provides a means not only for quantitatively determining the shear viscosity and elastic modulus of films but also for qualitatively comparing various systems. The physical model is extended to include four layers for describing dissolving/swelling films that form an energy-dissipative, interfacial layer. If the underlying film is rigid and acoustically thin, then the four-layer case can be reduced to a simplified three-layer description.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...