Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800502

RESUMEN

This work presents the gas separation evaluation of 6FDA-DAM:DABA (3:1) co-polyimide and its enhanced mixed matrix membranes (MMMs) with graphene oxide (GO) and ZIF-8 (particle size of <40 nm). The 6FDA-copolyimide was obtained through two-stage poly-condensation polymerization, while the ZIF-8 nanoparticles were synthesized using the dry and wet method. The MMMs were preliminarily prepared with 1-4 wt.% GO and 5-15 wt.% ZIF-8 filler loading independently. Based on the best performing GO MMM, the study proceeded with making MMMs based on the mixtures of GO and ZIF-8 with a fixed 1 wt.% GO content (related to the polymer matrix) and varied ZIF-8 loadings. All the materials were characterized thoroughly using TGA, FTIR, XRD, and FESEM. The gas separation was measured with 50:50 vol.% CO2:CH4 binary mixture at 2 bar feed pressure and 25 °C. The pristine 6FDA-copolyimide showed CO2 permeability (PCO2) of 147 Barrer and CO2/CH4 selectivity (αCO2/CH4) of 47.5. At the optimum GO loading (1 wt.%), the PCO2 and αCO2/CH4 were improved by 22% and 7%, respectively. A combination of GO (1 wt.%)/ZIF-8 fillers tremendously improves its PCO2; by 990% for GO/ZIF-8 (5 wt.%) and 1.124% for GO/ZIF-8 (10 wt.%). Regrettably, the MMMs lost their selectivity by 16-55% due to the non-selective filler-polymer interfacial voids. However, the hybrid MMM performances still resided close to the 2019 upper bound and showed good performance stability when tested at different feed pressure conditions.

2.
Neural Regen Res ; 16(12): 2534-2541, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33907045

RESUMEN

Apoptosis, a key mechanism of programmed cell death, is triggered by caspase-3 protein and lowering its levels with gene therapy may rescue cell death after central nervous system damage. We developed a novel, non-viral gene therapy to block caspase-3 gene expression using small interfering RNA (siRNA) delivered by polybutylcyanoacrylate nanoparticles (CaspNPs). In vitro CaspNPs significantly blocked caspase-3 protein expression in C6 cells, and when injected intraocularly in vivo, CaspNPs lowered retinal capsase-3 immunofluorescence by 57.9% in rats with optic nerve crush. Longitudinal, repeated retinal ganglion cell counts using confocal neuroimaging showed that post-traumatic cell loss after intraocular CaspNPs injection was only 36.1% versus 63.4% in lesioned controls. Because non-viral gene therapy with siRNA-nanoparticles can selectively silence caspace-3 gene expression and block apoptosis in post-mitotic neurons, siRNA delivery with nanoparticles may be promising for neuroprotection or restoration of central visual system damage and other neurological disorders. The animal study procedures were approved by the German National Act on the use of experimental animals (Ethic Committee Referat Verbraucherschutz, Veterinärangelegenheiten; Landesverwaltungsamt Sachsen-Anhalt, Halle, Germany, # IMP/G/01-1150/12 and # IMP/G/01-1469/17).

3.
Mol Pharm ; 16(12): 5068-5075, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31609624

RESUMEN

Minor changes in the composition of poloxamer 188-modified, DEAE-dextran-stabilized (PDD) polybutylcyanoacrylate (PBCA) nanoparticles (NPs), by altering the physicochemical parameters (such as size or surface charge), can substantially influence their delivery kinetics across the blood-retina barrier (BRB) in vivo. We now investigated the physicochemical mechanisms underlying these different behaviors of NP variations at biological barriers and their influence on the cellular and body distribution. Retinal whole mounts from rats injected in vivo with fluorescent PBCA NPs were processed for retina imaging ex vivo to obtain a detailed distribution of NPs with cellular resolution in retinal tissue. In line with previous in vivo imaging results, NPs with a larger size and medium surface charge accumulated more readily in brain tissue, and they could be more easily detected in retinal ganglion cells (RGCs), demonstrating the potential of these NPs for drug delivery into neurons. The biodistribution of the NPs revealed a higher accumulation of small-sized NPs in peripheral organs, which may reduce the passage of these particles into brain tissue via a "steal effect" mechanism. Thus, systemic interactions significantly determine the potential of NPs to deliver markers or drugs to the central nervous system (CNS). In this way, minor changes of NPs' physicochemical parameters can significantly impact their rate of brain/body biodistribution.


Asunto(s)
Nanopartículas/química , Retina/efectos de los fármacos , Retina/metabolismo , Animales , Barrera Hematorretinal/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , DEAE Dextrano/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Enbucrilato/química , Colorantes Fluorescentes/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Tamaño de la Partícula , Poloxámero/química , Ratas , Células Ganglionares de la Retina/metabolismo , Propiedades de Superficie/efectos de los fármacos , Distribución Tisular/efectos de los fármacos
4.
J Drug Target ; 27(3): 338-346, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30280953

RESUMEN

Because the blood-brain barrier (BBB) is an obstacle for drug-delivery, carrier systems such as polybutylcyanoacrylate (PBCA) nanoparticles (NPs) have been studied. Yet, little is known of how physiochemical features such as size, surfactants and surface charge influence BBB passage in vivo. We now used a rat model of in vivo imaging of the retina - which is brain tissue and can reflect the situation at the BBB - to study how size and surface charge determine NPs' ability to cross the blood-retina barrier (BRB). Interestingly, for poloxamer 188-modified, DEAE-dextran-stabilised, fluorescent PBCA NPs, decreasing the average zeta-size from 272 nm to 172 nm by centrifugation reduced the BRB passage of the NPs substantially. Varying the zeta potential within the narrow range of 0-15 mV by adding different amounts of stabiliser revealed that 0 mV and 15 mV were less desirable than 5 mV which facilitated the BRB passage. Moreover, whether the fluorescent marker was adsorbed or incorporated also influenced the transport into the retina tissue. Thus, minor changes in design of nano-carriers can alter physicochemical parameters such as size or zeta potential, thus substantially influencing NPs' biological distribution in vivo, possibly by interactions with blood constituents and peripheral organs.


Asunto(s)
Barrera Hematorretinal/metabolismo , Portadores de Fármacos/química , Enbucrilato/química , Nanopartículas/administración & dosificación , Animales , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos , Diseño de Fármacos , Nanopartículas/metabolismo , Tamaño de la Partícula , Ratas , Retina/metabolismo
5.
Int J Mol Sci ; 19(9)2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177657

RESUMEN

Superparamagnetic iron oxide nanoparticles (SPIO-NPs) have great potential to be used in different pharmaceutical applications, due to their unique and versatile physical and chemical properties. The aim of this study was to quantify in vitro cytotoxicity of dextran 70,000-coated SPIO-NPs labelled/unlabelled with rhodamine 123, in C6 glioma cells and primary hippocampal neural cells. In addition, we analyzed the in vitro and in vivo cellular uptake of labelled SPIO-NPs. The nanoparticles, with average size of 10⁻50 nm and polydispersity index of 0.37, were synthesized using Massart's co-precipitation method. The concentration-dependent cytotoxicity was quantified by using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Intracellular localization of SPIO-NPs was detected by confocal laser microscopy. In vivo confocal neuroimaging (ICON) was performed on male Wistar rats after intravitreal injection followed by ex vivo retina whole mount analysis. When used for in vitro testing concentrations in the range of diagnostic and therapeutic dosages, SPIO-NPs proved to be non-cytotoxic on C6 glioma cells for up to 24 h incubation time. The hippocampal cell culture also did not show impaired viability at low doses after 24 h incubation. Our results indicate that our dextran-coated SPIO-NPs have the potential for in vivo drug delivery applications.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glioma , Nanopartículas de Magnetita/toxicidad , Ratas
6.
Eur J Pharm Biopharm ; 87(1): 19-29, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24607790

RESUMEN

Nanoparticles (NP) can deliver drugs across the blood-brain barrier (BBB), but little is known which of the factors surfactant, size and zeta-potential are essential for allowing BBB passage. To this end we designed purpose-built fluorescent polybutylcyanoacrylate (PBCA) NP and imaged the NP's passage over the blood-retina barrier - which is a model of the BBB - in live animals. Rats received intravenous injections of fluorescent PBCA-NP fabricated by mini-emulsion polymerisation to obtain various NP's compositions that varied in surfactants (non-ionic, anionic, cationic), size (67-464nm) and zeta-potential. Real-time imaging of retinal blood vessels and retinal tissue was carried out with in vivo confocal neuroimaging (ICON) before, during and after NP's injection. Successful BBB passage with subsequent cellular labelling was achieved if NP were fabricated with non-ionic surfactants or cationic stabilizers but not when anionic compounds were added. NP's size and charge had no influence on BBB passage and cell labelling. This transport was not caused by an unspecific opening of the BBB because control experiments with injections of unlabelled NP and fluorescent dye (to test a "door-opener" effect) did not lead to parenchymal labelling. Thus, neither NP's size nor chemo-electric charge, but particle surface is the key factor determining BBB passage. This result has important implications for NP engineering in medicine: depending on the surfactant, NP can serve one of two opposite functions: while non-ionic tensides enhance brain up-take, addition of anionic tensides prevents it. NP can now be designed to specifically enhance drug delivery to the brain or, alternatively, to prevent brain penetration so to reduce unwanted psychoactive effects of drugs or prevent environmental nanoparticles from entering tissue of the central nervous system.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Portadores de Fármacos/química , Nanopartículas/química , Polímeros/química , Tensoactivos/química , Adsorción , Animales , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Barrera Hematorretinal/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Portadores de Fármacos/farmacocinética , Emulsiones , Inyecciones Intravenosas , Cinética , Microscopía Confocal , Neuroimagen , Tamaño de la Partícula , Polímeros/farmacocinética , Ratas Endogámicas , Propiedades de Superficie , Tensoactivos/farmacocinética
7.
J Nanopart Res ; 16(6)2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26420981

RESUMEN

Polybutylcyanoacrylate nanoparticles (PBCA NPs) are candidates for a drug delivery system, which can cross the blood-brain barrier (BBB). Because little is known about their toxicity, we exposed cells to PBCA NPs in vitro and in vivo and monitored their life and death assays. PBCA NPs were fabricated with different surfactants according to the mini-emulsion technique. Viabilities of HeLa and HEK293 cells after NP incubation were quantified by analysing cellular metabolic activity (MTT-test). We then repetitively injected i.v. rhodamine-labelled PBCA NP variations into rats and monitored the survival and morphology of retrogradely labelled neurons by in vivo confocal neuroimaging (ICON) for five weeks. To test for carrier-efficacy and safety, PBCA NPs loaded with Kyotorphin were injected in rats, and a hot plate test was used to quantify analgesic effects. In vitro, we found dose-dependent cell death which was, however, only detectable at very high doses and mainly seen in the cultures incubated with NPs fabricated with the tensids SDS and Tween. However, the in vivo experiments did not show any NP-induced neuronal death, even with particles which were toxic at high dose in vitro, i.e. NPs with Tween and SDS. The increased pain threshold at the hot plate test demonstrated that PBCA NPs are able to cross the BBB and thus comprise a useful tool for drug delivery into the central nervous system (CNS). Our findings showing that different nanoparticle formulations are non-toxic have important implications for the value of NP engineering approaches in medicine.

8.
Arch Toxicol ; 86(7): 1099-105, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22422342

RESUMEN

Because the potential neurotoxicity of nanoparticles is a significant issue, characterisation of nanoparticle entry into the brain is essential. Here, we describe an in vivo confocal neuroimaging method (ICON) of visualising the entry of fluorescent particles into the parenchyma of the central nervous system (CNS) in live animals using the retina as a model. Rats received intravenous injections of fluorescence-labelled polybutyl cyanoacrylate nanoparticles that had been synthesised by a standard miniemulsion polymerisation process. We performed live recording with ICON from before and up to 9 days after particle injection and took photomicrographs of the retina. In addition, selective retrograde labelling of the retinal ganglion cells was achieved by stereotaxic injection of a fluorescent dye into the superior colliculus. Using ICON, we observed vascular kinetics of nanoparticles (wash-in within seconds), their passage to the retina parenchyma (within minutes) and their distribution (mainly cellular) under in vivo conditions. For the detection of cell loss--which is important for the evaluation of toxic effects--in another experiment, we semi-quantitatively analysed the selectively labelled retinal neurons. Our results suggest that the dye per se does not lead to neuronal death. With ICON, it is possible to study nanoparticle kinetics in the retina as a model of the blood-brain barrier. Imaging data can be acquired within seconds after the injection, and the long-term fate of cellular uptake can be followed for many days to study the cellular/extracellular distribution of the nanoparticles. ICON is thus an effective and meaningful tool to investigate nanoparticle/CNS interactions.


Asunto(s)
Barrera Hematorretinal/metabolismo , Enbucrilato/farmacocinética , Nanopartículas/química , Retina/metabolismo , Vasos Retinianos/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Muerte Celular/efectos de los fármacos , Enbucrilato/administración & dosificación , Enbucrilato/química , Enbucrilato/toxicidad , Colorantes Fluorescentes/química , Inyecciones Intravenosas , Masculino , Microscopía Confocal , Microscopía Fluorescente , Microscopía por Video , Nanopartículas/administración & dosificación , Nanopartículas/toxicidad , Tamaño de la Partícula , Fotomicrografía , Ratas , Ratas Endogámicas , Retina/citología , Retina/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Vasos Retinianos/efectos de los fármacos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...