Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 408(24): 6545-55, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27497965

RESUMEN

Non-target analysis has become an important tool in the field of water analysis since a broad variety of pollutants from different sources are released to the water cycle. For identification of compounds in such complex samples, liquid chromatography coupled to high resolution mass spectrometry are often used. The introduction of ion mobility spectrometry provides an additional separation dimension and allows determining collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 500 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. A non-target analysis of a wastewater sample was initially performed with high performance liquid chromatography (HPLC) coupled to an ion mobility-quadrupole-time of flight mass spectrometer (IM-qTOF-MS). A database search including exact mass (±5 ppm) and CCS (±1 %) delivered 22 different compounds. Furthermore, the same sample was analyzed with a two-dimensional LC method, called LC+LC, developed in our group for the coupling to IM-qTOF-MS. This four dimensional separation platform revealed 53 different compounds, identified over exact mass and CCS, in the examined wastewater sample. It is demonstrated that the CCS database can also help to distinguish between isobaric structures exemplified for cyclophosphamide and ifosfamide. Graphical Abstract Scheme of sample analysis and database screening.

2.
Anal Bioanal Chem ; 408(12): 3309-17, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26968566

RESUMEN

The replacement of medical-grade silicone with industrial-grade silicone material in some silicone gel-filled breast implants (SBI) manufactured by Poly Implant Prothèse and Rofil Medical Nederland B.V., reported in 2010, which resulted in a higher rupture tendency of these SBI, demonstrates the need for non-invasive, sensitive monitoring and screening methods. Therefore a sensitive method based on large volume injection-gas chromatography coupled to mass spectrometry (LVI-GC/MS) was developed to determine octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclo-hexasiloxane (D6) in blood samples from women with intact (n = 13) and ruptured SBI (n = 11). With dichloromethane extraction, sample cooling during preparation, and analysis extraction efficiencies up to 100 % and limits of detection of 0.03-0.05 ng D4-D6/g blood were achieved. Blood samples from women with SBI were investigated. In contrast to women with intact SBI, in blood from women with ruptured SBI higher D4 and D6 concentrations up to 0.57 ng D4/g blood and 0.16 ng D6/g blood were detected. With concentrations above 0.18 D4 ng/blood and 0.10 ng D6/g blood as significant criteria for ruptured SBI, this developed analytical preoperative diagnostic method shows a significant increase of the recognition rate. Finally a higher precision (error rate 17%) than the commonly used clinical diagnostic method, mamma sonography (error rate 46%), was achieved.


Asunto(s)
Sangre , Implantes de Mama , Geles de Silicona , Siloxanos/química , Humanos , Control de Calidad
3.
Metallomics ; 2(1): 52-6, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21072374

RESUMEN

Methylation of metal(loid)s by bacteria or even mammals is a well known process that can lead to increased toxicity for humans. Nevertheless, reliable analytical techniques and tools are indispensable in speciation analysis of trace elements, especially since environmental or biological samples are usually characterised by complex matrices. Here the methylating capability of hepatic cells was observed in vitro. HepG2 cells were incubated with colloidal bismuth subcitrate, bismuth cysteine and bismuth glutathione, respectively for a period of 24 h. For identification the cell lysate was ethylated by sodium tetraethyl borate under neutral conditions. After cryo focussing by purge and trap, the bismuth speciation was carried out via GC/EI-MS/ICP-MS. Colloidal bismuth subcitrate and bismuth cysteine were methylated by HepG2 cells, while no methylated bismuth species was detected after incubation with bismuth glutathione.


Asunto(s)
Bismuto/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Hepatocitos/metabolismo , Compuestos Organometálicos/análisis , Espectrometría de Masas en Tándem/métodos , Bismuto/metabolismo , Coloides , Cisteína/análogos & derivados , Cisteína/análisis , Cisteína/metabolismo , Glutatión/análogos & derivados , Glutatión/análisis , Glutatión/metabolismo , Células Hep G2 , Hepatocitos/química , Humanos , Metilación , Compuestos Organometálicos/metabolismo
4.
Drug Metab Dispos ; 37(2): 352-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18981168

RESUMEN

Biological methylation and hydride formation of metals and metalloids are ubiquitous environmental processes that can lead to the formation of chemical species with significantly increased mobility and toxicity. Whereas much is known about the interaction of metal(loid)s with microorganisms in environmental settings, little information has been gathered on respective processes inside the human body as yet. Here, we studied the biotransformation and excretion of bismuth after ingestion of colloidal bismuth subcitrate (215 mg of bismuth) to 20 male human volunteers. Bismuth absorption in the stomach and upper intestine was very low, as evidenced by the small quantity of bismuth eliminated via the renal route. Total bismuth concentrations in blood increased rapidly in the first hour after ingestion. Most of the ingested bismuth was excreted via feces during the study period. Trace levels of the metabolite trimethylbismuth [(CH(3))(3)Bi] were detected via low temperaturegas chromatography/inductively coupled plasma-mass spectrometry in blood samples and in exhaled air samples. Concentrations were in the range of up to 2.50 pg/ml (blood) and 0.8 to 458 ng/m(3) (exhaled air), with high interindividual variation being observed. Elimination routes of bismuth were exhaled air (up to 0.03 per thousand), urine (0.03-1.2%), and feces. The site of (CH(3))(3)Bi production could not be identified in the present study, but the intestinal microflora seems to be involved in this biotransformation if accompanying ex vivo studies are taken into consideration.


Asunto(s)
Compuestos Organometálicos/análisis , Adulto , Biotransformación , Índice de Masa Corporal , Heces/química , Humanos , Masculino , Compuestos Organometálicos/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...