Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 112(5): 879-88, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25450012

RESUMEN

Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.


Asunto(s)
Alquenos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Alquenos/toxicidad , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Microbiología Industrial , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Mutación Puntual , Ingeniería de Proteínas , Estructura Terciaria de Proteína
2.
Biochim Biophys Acta ; 1831(4): 776-791, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23270816

RESUMEN

Coenzyme Qn (ubiquinone or Qn) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail of n isoprene units. Saccharomyces cerevisiae coq1-coq9 mutants have defects in Q biosynthesis, lack Q6, are respiratory defective, and sensitive to stress imposed by polyunsaturated fatty acids. The hallmark phenotype of the Q-less yeast coq mutants is that respiration in isolated mitochondria can be rescued by the addition of Q2, a soluble Q analog. Yeast coq10 mutants share each of these phenotypes, with the surprising exception that they continue to produce Q6. Structure determination of the Caulobacter crescentus Coq10 homolog (CC1736) revealed a steroidogenic acute regulatory protein-related lipid transfer (START) domain, a hydrophobic tunnel known to bind specific lipids in other START domain family members. Here we show that purified CC1736 binds Q2, Q3, Q10, or demethoxy-Q3 in an equimolar ratio, but fails to bind 3-farnesyl-4-hydroxybenzoic acid, a farnesylated analog of an early Q-intermediate. Over-expression of C. crescentus CC1736 or COQ8 restores respiratory electron transport and antioxidant function of Q6 in the yeast coq10 null mutant. Studies with stable isotope ring precursors of Q reveal that early Q-biosynthetic intermediates accumulate in the coq10 mutant and de novo Q-biosynthesis is less efficient than in the wild-type yeast or rescued coq10 mutant. The results suggest that the Coq10 polypeptide:Q (protein:ligand) complex may serve essential functions in facilitating de novo Q biosynthesis and in delivering newly synthesized Q to one or more complexes of the respiratory electron transport chain.


Asunto(s)
Antioxidantes/metabolismo , Transporte de Electrón/fisiología , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquinona/metabolismo , Secuencia de Aminoácidos , Transporte de Electrón/genética , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Ubiquinona/análogos & derivados
3.
Free Radic Biol Med ; 50(1): 130-8, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20955788

RESUMEN

The facile abstraction of bis-allylic hydrogens from polyunsaturated fatty acids (PUFAs) is the hallmark chemistry responsible for initiation and propagation of autoxidation reactions. The products of these autoxidation reactions can form cross-links to other membrane components and damage proteins and nucleic acids. We report that PUFAs deuterated at bis-allylic sites are much more resistant to autoxidation reactions, because of the isotope effect. This is shown using coenzyme Q-deficient Saccharomyces cerevisiae coq mutants with defects in the biosynthesis of coenzyme Q (Q). Q functions in respiratory energy metabolism and also functions as a lipid-soluble antioxidant. Yeast coq mutants incubated in the presence of the PUFA α-linolenic or linoleic acid exhibit 99% loss of colony formation after 4h, demonstrating a profound loss of viability. In contrast, coq mutants treated with monounsaturated oleic acid or with one of the deuterated PUFAs, 11,11-D(2)-linoleic or 11,11,14,14-D(4)-α-linolenic acid, retain viability similar to wild-type yeast. Deuterated PUFAs also confer protection to wild-type yeast subjected to heat stress. These results indicate that isotope-reinforced PUFAs are stabilized compared to standard PUFAs, and they protect coq mutants and wild-type yeast cells against the toxic effects of lipid autoxidation products. These findings suggest new approaches to controlling ROS-inflicted cellular damage and oxidative stress.


Asunto(s)
Citoprotección/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Antioxidantes/farmacología , Citoprotección/genética , Deuterio/química , Deuterio/metabolismo , Evaluación Preclínica de Medicamentos , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Cromatografía de Gases y Espectrometría de Masas , Respuesta al Choque Térmico/efectos de los fármacos , Respuesta al Choque Térmico/genética , Marcaje Isotópico , Organismos Modificados Genéticamente , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquinona/genética , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
4.
J Biol Chem ; 285(36): 27827-38, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20592037

RESUMEN

Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable (13)C(6)-isotope of pABA (p- amino[aromatic-(13)C(6)]benzoic acid ([(13)C(6)]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[(13)C(6)]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [(13)C(6)]pABA or [(13)C(6)]4HB generate both (13)C(6)-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product (13)C(6)-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ(6). This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ(6) quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates.


Asunto(s)
Ácido 4-Aminobenzoico/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquinona/biosíntesis , Biocatálisis , Ácido Corísmico/metabolismo , Genes Fúngicos/genética , Metabolismo de los Lípidos , Liasas/metabolismo , Parabenos/metabolismo , Prenilación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Ubiquinona/metabolismo
5.
J Immunol ; 179(10): 6933-42, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17982084

RESUMEN

IL-1R activation is required for neutrophil recruitment in an effective innate immune response against Staphylococcus aureus infection. In this study, we investigated the mechanism of IL-1R activation in vivo in a model of S. aureus infection. In response to a S. aureus cutaneous challenge, mice deficient in IL-1beta, IL-1alpha/IL-1beta, but not IL-1alpha, developed larger lesions with higher bacterial counts and had decreased neutrophil recruitment compared with wild-type mice. Neutrophil recruitment and bacterial clearance required IL-1beta expression by bone marrow (BM)-derived cells and not by non-BM-derived resident cells. In addition, mice deficient in the inflammasome component apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) had the same defects in neutrophil recruitment and host defense as IL-1beta-deficient mice, demonstrating an essential role for the inflammasome in mediating the production of active IL-1beta to promote neutrophil recruitment in host defense against S. aureus. This finding was further supported by the ability of recombinant active IL-1beta to control the infection and promote bacterial clearance in IL-1beta-deficient mice. These studies define a key host defense circuit where inflammasome-mediated IL-1beta production by BM-derived cells signals IL-1R on non-BM-derived resident cells to activate neutrophil recruitment in the innate immune response against S. aureus in vivo.


Asunto(s)
Inmunidad Innata/inmunología , Interleucina-1beta/inmunología , Infiltración Neutrófila/inmunología , Neutrófilos/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/patología , Proteínas Adaptadoras de Señalización CARD , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/inmunología , Inmunidad Innata/genética , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Interleucina-1beta/genética , Ratones , Ratones Noqueados , Activación Neutrófila/genética , Activación Neutrófila/inmunología , Infiltración Neutrófila/genética , Neutrófilos/patología , Receptores de Interleucina-1/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...