Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 35(7): 554-566, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34726476

RESUMEN

In plants, a first layer of inducible immunity is conferred by pattern recognition receptors (PRRs) that bind microbe- and damage-associated molecular patterns to activate pattern-triggered immunity (PTI). PTI is strengthened or followed by another potent form of immunity when intracellular receptors recognize pathogen effectors, termed effector-triggered immunity. Immunity signaling regulators have been reported to influence abiotic stress responses as well, yet the governing principles and mechanisms remain ambiguous. Here, we report that PRRs of a leucine-rich repeat ectodomain also confer salt tolerance in Arabidopsis thaliana, following recognition of cognate ligands such as bacterial flagellin (flg22 epitope) and elongation factor Tu (elf18 epitope), and the endogenous Pep peptides. Pattern-triggered salt tolerance (PTST) requires authentic PTI signaling components; namely, the PRR-associated kinases BAK1 and BIK1 and the NADPH oxidase RBOHD. Exposure to salt stress induces the release of Pep precursors, pointing to the involvement of the endogenous immunogenic peptides in developing plant tolerance to high salinity. Transcriptome profiling reveals an inventory of PTST target genes, which increase or acquire salt responsiveness following a preexposure to immunogenic patterns. In good accordance, plants challenged with nonpathogenic bacteria also acquired salt tolerance in a manner dependent on PRRs. Our findings provide insight into signaling plasticity underlying biotic or abiotic stress cross-tolerance in plants conferred by PRRs.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Epítopos , Leucina , Péptidos , Inmunidad de la Planta/fisiología , Plantas , Proteínas Serina-Treonina Quinasas , Receptores de Reconocimiento de Patrones/genética , Tolerancia a la Sal/genética
2.
New Phytol ; 229(5): 2844-2858, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33131060

RESUMEN

In Arabidopsis thaliana, PROPEPs and their derived elicitor-active Pep epitopes provide damage-associated molecular patterns (DAMPs), which trigger defence responses through cell-surface receptors PEPR1 and PEPR2. In addition, Pep peptides induce root growth inhibition and root hair formation, however their relationships and coordinating mechanisms are poorly understood. Here, we reveal that Pep1-mediated root hair formation requires PEPR-associated kinases BAK1/BKK1 and BIK1/PBL1, ethylene, auxin and root hair differentiation regulators, in addition to PEPR2. Our analysis on 69 accessions unravels intraspecies variations in Pep1-induced root hair formation and growth inhibition. The absence of a positive correlation between the two traits suggests their separate regulation and diversification in natural populations of A. thaliana. Restricted PEPR2 expression to certain root tissues is sufficient to induce root hair formation and growth inhibition in response to Pep1, indicating the capacity of non-cell-autonomous receptor signalling in different root tissues. Of particular note, root hair cell-specific PEPR2 expression uncouples defence activation from root growth inhibition and root hair formation, suggesting a unique property of root hairs in root defence activation following Pep1 recognition.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Péptidos , Raíces de Plantas , Proteínas Serina-Treonina Quinasas , Receptores de Superficie Celular
3.
Nat Plants ; 3: 17072, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28548656

RESUMEN

Osmotic stress caused by drought, salt or cold decreases plant fitness. Acquired stress tolerance defines the ability of plants to withstand stress following an initial exposure1. We found previously that acquired osmotolerance after salt stress is widespread among Arabidopsis thaliana accessions2. Here, we identify ACQOS as the locus responsible for ACQUIRED OSMOTOLERANCE. Of its five haplotypes, only plants carrying group 1 ACQOS are impaired in acquired osmotolerance. ACQOS is identical to VICTR, encoding a nucleotide-binding leucine-rich repeat (NLR) protein3. In the absence of osmotic stress, group 1 ACQOS contributes to bacterial resistance. In its presence, ACQOS causes detrimental autoimmunity, thereby reducing osmotolerance. Analysis of natural variation at the ACQOS locus suggests that functional and non-functional ACQOS alleles are being maintained due to a trade-off between biotic and abiotic stress adaptation. Thus, polymorphism in certain plant NLR genes might be influenced by competing environmental stresses.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Estrés Fisiológico/genética , Arabidopsis/fisiología , Genes de Plantas , Estudio de Asociación del Genoma Completo , Presión Osmótica
4.
EMBO J ; 35(1): 46-61, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26574534

RESUMEN

Pathogens infect a host by suppressing defense responses induced upon recognition of microbe-associated molecular patterns (MAMPs). Despite this suppression, MAMP receptors mediate basal resistance to limit host susceptibility, via a process that is poorly understood. The Arabidopsis leucine-rich repeat (LRR) receptor kinase BAK1 associates and functions with different cell surface LRR receptors for a wide range of ligands, including MAMPs. We report that BAK1 depletion is linked to defense activation through the endogenous PROPEP peptides (Pep epitopes) and their LRR receptor kinases PEPR1/PEPR2, despite critical defects in MAMP signaling. In bak1-knockout plants, PEPR elicitation results in extensive cell death and the prioritization of salicylate-based defenses over jasmonate-based defenses, in addition to elevated proligand and receptor accumulation. BAK1 disruption stimulates the release of PROPEP3, produced in response to Pep application and during pathogen challenge, and renders PEPRs necessary for basal resistance. These findings are biologically relevant, since specific BAK1 depletion coincides with PEPR-dependent resistance to the fungal pathogen Colletotrichum higginsianum. Thus, the PEPR pathway ensures basal resistance when MAMP-triggered defenses are compromised by BAK1 depletion.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/genética , Colletotrichum/inmunología , Técnicas de Inactivación de Genes , Proteínas Serina-Treonina Quinasas/genética , Transactivadores/metabolismo
5.
Biochem Biophys Res Commun ; 468(1-2): 113-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26529546

RESUMEN

Death-associated protein kinase 2 (DAPK2) is a positive regulator of apoptosis. Although we recently reported that 14-3-3 proteins inhibit DAPK2 activity and its subsequent apoptotic effects via binding to DAPK2, the molecular mechanisms underlying the DAPK2-mediated apoptotic pathway remain unclear. Therefore, we attempted to further identify DAPK2-interacting proteins using pull-down assays and mass spectrometry. The microtubule ß-tubulin was identified as a novel DAPK2-binding protein in HeLa cells. Pull-down assays revealed that DAPK2 interacted with the α/ß-tubulin heterodimer, and that the C-terminal region of DAPK2, which differs from that of other DAPK family members, was sufficient for the association with ß-tubulin. Although the microtubule-depolymerizing agent nocodazole induced apoptosis in HeLa cells, the level of apoptosis was significantly decreased in the DAPK2 knockdown cells. Furthermore, we found that treatment with nocodazole resulted in an increased binding of DAPK2 to ß-tubulin. These findings indicate that DAPK2 mediates nocodazole-induced apoptosis via binding to tubulin.


Asunto(s)
Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Nocodazol/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Células HeLa , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...