Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 102(4): 745-761.e8, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30922875

RESUMEN

Norepinephrine (NE) is a key biogenic monoamine neurotransmitter involved in a wide range of physiological processes. However, its precise dynamics and regulation remain poorly characterized, in part due to limitations of available techniques for measuring NE in vivo. Here, we developed a family of GPCR activation-based NE (GRABNE) sensors with a 230% peak ΔF/F0 response to NE, good photostability, nanomolar-to-micromolar sensitivities, sub-second kinetics, and high specificity. Viral- or transgenic-mediated expression of GRABNE sensors was able to detect electrical-stimulation-evoked NE release in the locus coeruleus (LC) of mouse brain slices, looming-evoked NE release in the midbrain of live zebrafish, as well as optogenetically and behaviorally triggered NE release in the LC and hypothalamus of freely moving mice. Thus, GRABNE sensors are robust tools for rapid and specific monitoring of in vivo NE transmission in both physiological and pathological processes.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Locus Coeruleus/metabolismo , Mesencéfalo/metabolismo , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/genética , Animales , Animales Modificados Genéticamente , Estimulación Eléctrica , Técnicas In Vitro , Microscopía Intravital , Ratones , Microscopía Fluorescente , Optogenética , Ingeniería de Proteínas , Pez Cebra
2.
Nat Neurosci ; 20(1): 4-6, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-28025981

Asunto(s)
Corteza Motora , Humanos
3.
Nat Neurosci ; 19(12): 1647-1657, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27749825

RESUMEN

We rely on movement to explore the environment, for example, by palpating an object. In somatosensory cortex, activity related to movement of digits or whiskers is suppressed, which could facilitate detection of touch. Movement-related suppression is generally assumed to involve corollary discharges. Here we uncovered a thalamocortical mechanism in which cortical fast-spiking interneurons, driven by sensory input, suppress movement-related activity in layer 4 (L4) excitatory neurons. In mice locating objects with their whiskers, neurons in the ventral posteromedial nucleus (VPM) fired in response to touch and whisker movement. Cortical L4 fast-spiking interneurons inherited these responses from VPM. In contrast, L4 excitatory neurons responded mainly to touch. Optogenetic experiments revealed that fast-spiking interneurons reduced movement-related spiking in excitatory neurons, enhancing selectivity for touch-related information during active tactile sensation. These observations suggest a fundamental computation performed by the thalamocortical circuit to accentuate salient tactile information.


Asunto(s)
Potenciales de Acción/fisiología , Interneuronas/fisiología , Movimiento/fisiología , Vías Nerviosas/fisiología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Conducta Animal , Estimulación Eléctrica/métodos , Ratones , Técnicas de Placa-Clamp/métodos , Estimulación Física/métodos , Tálamo/fisiología , Tacto/fisiología
4.
PLoS One ; 9(2): e88678, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24520413

RESUMEN

The mouse is an increasingly prominent model for the analysis of mammalian neuronal circuits. Neural circuits ultimately have to be probed during behaviors that engage the circuits. Linking circuit dynamics to behavior requires precise control of sensory stimuli and measurement of body movements. Head-fixation has been used for behavioral research, particularly in non-human primates, to facilitate precise stimulus control, behavioral monitoring and neural recording. However, choice-based, perceptual decision tasks by head-fixed mice have only recently been introduced. Training mice relies on motivating mice using water restriction. Here we describe procedures for head-fixation, water restriction and behavioral training for head-fixed mice, with a focus on active, whisker-based tactile behaviors. In these experiments mice had restricted access to water (typically 1 ml/day). After ten days of water restriction, body weight stabilized at approximately 80% of initial weight. At that point mice were trained to discriminate sensory stimuli using operant conditioning. Head-fixed mice reported stimuli by licking in go/no-go tasks and also using a forced choice paradigm using a dual lickport. In some cases mice learned to discriminate sensory stimuli in a few trials within the first behavioral session. Delay epochs lasting a second or more were used to separate sensation (e.g. tactile exploration) and action (i.e. licking). Mice performed a variety of perceptual decision tasks with high performance for hundreds of trials per behavioral session. Up to four months of continuous water restriction showed no adverse health effects. Behavioral performance correlated with the degree of water restriction, supporting the importance of controlling access to water. These behavioral paradigms can be combined with cellular resolution imaging, random access photostimulation, and whole cell recordings.


Asunto(s)
Conducta Animal/fisiología , Etología/métodos , Animales , Peso Corporal , Discriminación en Psicología , Cabeza , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Recompensa , Sacarosa , Análisis y Desempeño de Tareas , Agua , Privación de Agua
5.
J Neurosci ; 33(23): 9576-91, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23739955

RESUMEN

Rodents explore the world by palpating objects with their whiskers. Whiskers interact with objects, causing stresses in whisker follicles and spikes in sensory neurons, which are interpreted by the brain to produce tactile perception. The mechanics of the whisker thus couple self-movement and the structure of the world to sensation. Whiskers are elastic thin rods; hence, they tend to vibrate. Whisker vibrations could be a key ingredient of rodent somatosensation. However, the specific conditions under which vibrations contribute appreciably to the stresses in the follicle remain unclear. We present an analytical solution for the deformation of individual whiskers in response to a time-varying force. We tracked the deformation of mouse whiskers during a pole localization task to extract the whisker Young's modulus and damping coefficient. We further extracted the time course and amplitude of steady-state forces during whisker-object contact. We use our model to calculate the relative contribution of steady-state and vibrational forces to stresses in the follicle in a variety of active sensation tasks and during the passive whisker stimuli typically used for sensory physiology. Vibrational stresses are relatively more prominent compared with steady-state forces for short contacts and for contacts close to the whisker tip. Vibrational stresses are large for texture discrimination, and under some conditions, object localization tasks. Vibrational stresses are negligible for typical ramp-and-hold stimuli. Our calculation provides a general framework, applicable to most experimental situations.


Asunto(s)
Potenciales de Acción/fisiología , Conducta Exploratoria/fisiología , Percepción del Tacto/fisiología , Vibración , Vibrisas/fisiología , Animales , Masculino , Ratones , Tacto/fisiología
6.
Nat Neurosci ; 16(7): 958-65, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23727820

RESUMEN

Active sensation requires the convergence of external stimuli with representations of body movements. We used mouse behavior, electrophysiology and optogenetics to dissect the temporal interactions among whisker movement, neural activity and sensation of touch. We photostimulated layer 4 activity in single barrels in a closed loop with whisking. Mimicking touch-related neural activity caused illusory perception of an object at a particular location, but scrambling the timing of the spikes over one whisking cycle (tens of milliseconds) did not abolish the illusion, indicating that knowledge of instantaneous whisker position is unnecessary for discriminating object locations. The illusions were induced only during bouts of directed whisking, when mice expected touch, and in the relevant barrel. Reducing activity biased behavior, consistent with a spike count code for object detection at a particular location. Our results show that mice integrate coding of touch with movement over timescales of a whisking bout to produce perception of active touch.


Asunto(s)
Potenciales de Acción/fisiología , Discriminación en Psicología/fisiología , Ilusiones/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Vibrisas/inervación , Potenciales de Acción/genética , Vías Aferentes/fisiología , Animales , Channelrhodopsins , Proteínas de Unión al ADN/genética , Canales Epiteliales de Sodio/genética , Proteínas del Ojo/genética , Neuronas GABAérgicas/fisiología , Proteínas de Homeodominio/genética , Ilusiones/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Optogenética , Estimulación Física , Tiempo de Reacción/fisiología , Factores de Transcripción/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Grabación en Video , Proteína Homeobox SIX3
7.
J Neurosci ; 33(16): 6726-41, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595731

RESUMEN

Rodents move their whiskers to locate objects in space. Here we used psychophysical methods to show that head-fixed mice can localize objects along the axis of a single whisker, the radial dimension, with one-millimeter precision. High-speed videography allowed us to estimate the forces and bending moments at the base of the whisker, which underlie radial distance measurement. Mice judged radial object location based on multiple touches. Both the number of touches (1-17) and the forces exerted by the pole on the whisker (up to 573 µN; typical peak amplitude, 100 µN) varied greatly across trials. We manipulated the bending moment and lateral force pressing the whisker against the sides of the follicle and the axial force pushing the whisker into the follicle by varying the compliance of the object during behavior. The behavioral responses suggest that mice use multiple variables (bending moment, axial force, lateral force) to extract radial object localization. Characterization of whisker mechanics revealed that whisker bending stiffness decreases gradually with distance from the face over five orders of magnitude. As a result, the relative amplitudes of different stress variables change dramatically with radial object distance. Our data suggest that mice use distance-dependent whisker mechanics to estimate radial object location using an algorithm that does not rely on precise control of whisking, is robust to variability in whisker forces, and is independent of object compliance and object movement. More generally, our data imply that mice can measure the amplitudes of forces in the sensory follicles for tactile sensation.


Asunto(s)
Conducta Exploratoria/fisiología , Tacto/fisiología , Vibrisas/anatomía & histología , Vibrisas/fisiología , Algoritmos , Animales , Simulación por Computador , Topografía de la Córnea , Señales (Psicología) , Toma de Decisiones/fisiología , Lateralidad Funcional , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Modelos Biológicos , Estimulación Física/métodos , Psicofísica , Factores de Tiempo , Vibrisas/ultraestructura
8.
Nat Methods ; 10(2): 162-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314171

RESUMEN

We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.


Asunto(s)
Proteínas de Escherichia coli , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Recombinantes de Fusión , Transmisión Sináptica/fisiología , Animales , Astrocitos/metabolismo , Técnicas Biosensibles , Caenorhabditis elegans , Señalización del Calcio/fisiología , Proteínas de Escherichia coli/síntesis química , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/síntesis química , Hipocampo/metabolismo , Ratones , Corteza Motora/metabolismo , Neuronas/metabolismo , Estimulación Luminosa , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/síntesis química , Retina/fisiología , Relación Señal-Ruido , Pez Cebra
9.
Cold Spring Harb Protoc ; 2012(6): 647-56, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22661439

RESUMEN

Genetically encoded calcium indicators (GECIs), which are based on chimeric fluorescent proteins, can be used to monitor calcium transients in living cells and organisms. Because they are encoded by DNA, GECIs can be delivered to the intact brain noninvasively and targeted to defined populations of neurons and specific subcellular compartments for long-term, repeated measurements in vivo. GECIs have improved iteratively and are becoming useful for imaging neural activity in vivo. Here we summarize extrinsic and intrinsic factors that influence a GECI's performance and provides guidelines for selecting the appropriate GECI for a given application. We also review recent progress in GECI design, optimization, and standardized testing protocols.


Asunto(s)
Calcio/análisis , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Neuronas/fisiología , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
PLoS Biol ; 9(1): e1000572, 2011 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-21245906

RESUMEN

Rodents move their whiskers to locate and identify objects. Cortical areas involved in vibrissal somatosensation and sensorimotor integration include the vibrissal area of the primary motor cortex (vM1), primary somatosensory cortex (vS1; barrel cortex), and secondary somatosensory cortex (S2). We mapped local excitatory pathways in each area across all cortical layers using glutamate uncaging and laser scanning photostimulation. We analyzed these maps to derive laminar connectivity matrices describing the average strengths of pathways between individual neurons in different layers and between entire cortical layers. In vM1, the strongest projection was L2/3→L5. In vS1, strong projections were L2/3→L5 and L4→L3. L6 input and output were weak in both areas. In S2, L2/3→L5 exceeded the strength of the ascending L4→L3 projection, and local input to L6 was prominent. The most conserved pathways were L2/3→L5, and the most variable were L4→L2/3 and pathways involving L6. Local excitatory circuits in different cortical areas are organized around a prominent descending pathway from L2/3→L5, suggesting that sensory cortices are elaborations on a basic motor cortex-like plan.


Asunto(s)
Corteza Motora/fisiología , Red Nerviosa/anatomía & histología , Corteza Somatosensorial/fisiología , Vibrisas/inervación , Animales , Mapeo Encefálico , Ratones , Corteza Motora/anatomía & histología , Terminales Presinápticos/fisiología , Corteza Somatosensorial/anatomía & histología
11.
Nat Methods ; 6(12): 875-81, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19898485

RESUMEN

Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation-evoked fluorescence responses were significantly enhanced with GCaMP3 (4-6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.


Asunto(s)
Caenorhabditis elegans/citología , Calcio/metabolismo , Drosophila melanogaster/citología , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Línea Celular , Drosophila melanogaster/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones
12.
J Biol Chem ; 284(10): 6455-64, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19098007

RESUMEN

The genetically encoded calcium indicator GCaMP2 shows promise for neural network activity imaging, but is currently limited by low signal-to-noise ratio. We describe x-ray crystal structures as well as solution biophysical and spectroscopic characterization of GCaMP2 in the calcium-free dark state, and in two calcium-bound bright states: a monomeric form that dominates at intracellular concentrations observed during imaging experiments and an unexpected domain-swapped dimer with decreased fluorescence. This series of structures provides insight into the mechanism of Ca2+-induced fluorescence change. Upon calcium binding, the calmodulin (CaM) domain wraps around the M13 peptide, creating a new domain interface between CaM and the circularly permuted enhanced green fluorescent protein domain. Residues from CaM alter the chemical environment of the circularly permuted enhanced green fluorescent protein chromophore and, together with flexible inter-domain linkers, block solvent access to the chromophore. Guided by the crystal structures, we engineered a series of GCaMP2 point mutants to probe the mechanism of GCaMP2 function and characterized one mutant with significantly improved signal-to-noise. The mutation is located at a domain interface and its effect on sensor function could not have been predicted in the absence of structural data.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/química , Proteínas Fluorescentes Verdes/química , Modelos Moleculares , Péptidos/química , Proteínas Recombinantes de Fusión/química , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cristalografía por Rayos X , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Péptidos/genética , Péptidos/metabolismo , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Relación Estructura-Actividad
13.
Brain Cell Biol ; 36(1-4): 69-86, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18941901

RESUMEN

Genetically encoded calcium indicators (GECIs), based on recombinant fluorescent proteins, have been engineered to observe calcium transients in living cells and organisms. Through observation of calcium, these indicators also report neural activity. We review progress in GECI construction and application, particularly toward in vivo monitoring of sparse action potentials (APs). We summarize the extrinsic and intrinsic factors that influence GECI performance. A simple model of GECI response to AP firing demonstrates the relative significance of these factors. We recommend a standardized protocol for evaluating GECIs in a physiologically relevant context. A potential method of simultaneous optical control and recording of neuronal circuits is presented.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Proteínas Luminiscentes/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Electrofisiología/métodos , Proteínas Luminiscentes/genética , Microscopía Confocal/métodos , Neuronas/metabolismo
14.
Chem Biol ; 13(5): 521-30, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16720273

RESUMEN

The binding interface of calmodulin and a calmodulin binding peptide were reengineered by computationally designing complementary bumps and holes. This redesign led to the development of sensitive and specific pairs of mutant proteins used to sense Ca(2+) in a second generation of genetically encoded Ca(2+) indicators (cameleons). These cameleons are no longer perturbed by large excesses of native calmodulin, and they display Ca(2+) sensitivities tuned over a 100-fold range (0.6-160 microM). Incorporation of circularly permuted Venus in place of Citrine results in a 3- to 5-fold increase in the dynamic range. These redesigned cameleons show significant improvements over previous versions in the ability to monitor Ca(2+) in the cytoplasm as well as distinct subcellular localizations, such as the plasma membrane of neurons and the mitochondria.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Calcio/química , Calmodulina/química , Membrana Celular/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Unión Proteica , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...