Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-499047

RESUMEN

Nirmatrelvir, an oral antiviral targeting the 3CL protease of SARS-CoV-2, has been demonstrated to be clinically useful in reducing hospitalization or death due to COVID-191,2. However, as SARS-CoV-2 has evolved to become resistant to other therapeutic modalities3-9, there is a concern that the same could occur for nirmatrelvir. Here, we have examined this possibility by in vitro passaging of SARS-CoV-2 in increasing concentrations of nirmatrelvir using two independent approaches, including one on a large scale in 480 wells. Indeed, highly resistant viruses emerged from both, and their sequences revealed a multitude of 3CL protease mutations. In the experiment done at a larger scale with many replicates, 53 independent viral lineages were selected with mutations observed at 23 different residues of the enzyme. Yet, several common mutational pathways to nirmatrelvir resistance were preferred, with a majority of the viruses descending from T21I, P252L, or T304I as precursor mutations. Construction and analysis of 13 recombinant SARS-CoV-2 clones, each containing a unique mutation or a combination of mutations showed that the above precursor mutations only mediated low-level resistance, whereas greater resistance required accumulation of additional mutations. E166V mutation conferred the strongest resistance (~100-fold), but this mutation resulted in a loss of viral replicative fitness that was restored by compensatory changes such as L50F and T21I. Structural explanations are discussed for some of the mutations that are proximal to the drug-binding site, as well as cross-resistance or lack thereof to ensitrelvir, another clinically important 3CL protease inhibitor. Our findings indicate that SARS-CoV-2 resistance to nirmatrelvir does readily arise via multiple pathways in vitro, and the specific mutations observed herein form a strong foundation from which to study the mechanism of resistance in detail and to inform the design of next generation protease inhibitors.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-493517

RESUMEN

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged dramatically to become dominant in the United States and South Africa, respectively1,2. These novel subvariants carrying additional mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21261670

RESUMEN

COVID-19 (coronavirus disease 2019) vaccines have been rapidly developed and deployed globally as a measure to combat the disease. These vaccines have been demonstrated to confer significant protection, but there have been reports of temporal decay in antibody titer. Furthermore, several variants have been identified with variable degrees of antibody resistance. These two factors suggest that a booster vaccination may be worthy of consideration. While such a booster dose has been studied as a series of three homologous vaccines in healthy individuals, to our knowledge, information on a heterologous regimen remains unreported, despite the practical benefits of such a scheme. Here, in this observational study, we investigated the serological profile of four healthy individuals who received two doses of the BNT162b2 vaccine, followed by a third booster dose with the Ad26.COV2.S vaccine. We found that while all individuals had spike-binding antibodies at each of the timepoints tested, there was an appreciable drop in titer by four months following the second vaccination. The third vaccine dose robustly increased titers beyond that of two vaccinations, and these elicited antibodies had neutralizing capability against all SARS-CoV-2 strains tested in both a recombinant vesicular stomatitis virus-based pseudovirus assay and an authentic SARS-CoV-2 assay, except for one individual against B.1.351 in the latter assay. Thus, a third COVID-19 vaccine dose in healthy individuals promoted not just neutralizing antibody potency, but also induced breadth against dominant SARS-CoV-2 variants. SignificanceCOVID-19 vaccines confer protection from symptomatic disease, but the elicited antibody titer has been found to decrease with time. Furthermore, SARS-CoV-2 variants with relative resistance against antibody neutralization have been identified. To overcome such issues, a third vaccine dose applied as a booster vaccine may be necessary. We studied four healthy individuals who received a heterologous booster dose as a third vaccine. All of these individuals had heightened neutralizing antibody titer following the booster vaccination, and could neutralize nearly all variants tested. Thus, a heterologous third COVID-19 vaccine dose may be a mechanism to both heighten and broaden antibody titers, and could be an additional strategy for controlling the SARS-CoV-2 pandemic.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21252259

RESUMEN

Recent months have seen surges of SARS-CoV-2 infection across the globe with considerable viral evolution1-3. Extensive mutations in the spike protein may threaten efficacy of vaccines and therapeutic monoclonal antibodies4. Two signature mutations of concern are E484K, which plays a crucial role in the loss of neutralizing activity of antibodies, and N501Y, a driver of rapid worldwide transmission of the B.1.1.7 lineage. Here, we report the emergence of variant lineage B.1.526 that contains E484K and its alarming rise to dominance in New York City in early 2021. This variant is partially or completely resistant to two therapeutic monoclonal antibodies in clinical use and less susceptible to neutralization by convalescent plasma or vaccinee sera, posing a modest antigenic challenge. The B.1.526 lineage has now been reported from all 50 states in the US and numerous other countries. B.1.526 rapidly replaced earlier lineages in New York upon its emergence, with an estimated transmission advantage of 35%. Such transmission dynamics, together with the relative antibody resistance of its E484K sub-lineage, likely contributed to the sharp rise and rapid spread of B.1.526. Although SARS-CoV-2 B.1.526 initially outpaced B.1.1.7 in the region, its growth subsequently slowed concurrent with the rise of B.1.1.7 and ensuing variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...