Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37997966

RESUMEN

This study aimed to determine the mechanism underlying the modulation of radiosensitivity in cancer cells by the radiation-induced bystander effect (RIBE). We hypothesized that the RIBE mediates cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in elevating radioresistance in unirradiated cells. In this study, we used the SPICE-QST microbeam irradiation system to target 0.07-0.7% cells by 3.4-MeV proton microbeam in the cell culture sample, such that most cells in the dish became bystander cells. Twenty-four hours after irradiation, we observed COX-2 protein upregulation in microbeam-irradiated cells compared to that of controls. Additionally, 0.29% of the microbeam-irradiated cells exhibited increased cell survival and a reduced micronucleus rate against X-ray irradiation compared to that of non-microbeam irradiated cells. The radioresistance response was diminished in both cell groups with the hemichannel inhibitor and in COX-2-knockout cells under cell-to-cell contact and sparsely distributed conditions. The results indicate that the RIBE upregulates the cell radioresistance through COX-2/PGE2 intercellular responses, thereby contributing to issues, such as the risk of cancer recurrence.

2.
Int J Radiat Biol ; 99(9): 1405-1412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36731459

RESUMEN

PURPOSE: Radiation cancer therapy with ultra-high dose rate (UHDR) exposure, so-called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response to therapy. The aim of this study was to clarify whether a 59.5 MeV proton beam at an UHDR of 48.6 Gy/s could effectively reduce the DNA damage of pBR322 plasmid DNA in solution compared to the conventional dose rate (CONV) of 0.057 Gy/s. MATERIALS AND METHODS: A simple system, consisting of pBR322 plasmid DNA in 1× Tris-EDTA buffer, was initially employed for proton beam exposure. We then used formamidopyrimidine-DNA glycosylase (Fpg) enzymes. which convert oxidative base damages of oxidized purines to DNA strand breaks, to quantify DNA single strand breaks (SSBs) and double strand breaks (DSBs) by agarose gel electrophoresis. RESULTS: Our findings showed that the SSB induction rate (SSB per plasmid DNA/Gy) at UHDR and the induction of Fpg enzyme sensitive sites (ESS) were significantly reduced in UHDR compared to CONV. However, there was no significant difference in DSB induction and non-DSB cluster damages. CONCLUSIONS: UHDR of a 59.5 MeV proton beam could reduce non-clustered, non-DSB damages, such as SSB and sparsely distributed ESS. However, this effect may not be significant in reducing lethal DNA damage that becomes apparent only in acute radiation effects of mammalian cells and in vivo studies.


Asunto(s)
ADN , Protones , Animales , Relación Dosis-Respuesta en la Radiación , ADN/efectos de la radiación , Plásmidos/genética , Daño del ADN , Estrés Oxidativo , Mamíferos/genética
3.
J Radiat Res ; 63(2): 255-260, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-34952540

RESUMEN

Radiation cancer therapy with ultra-high dose rate exposure, so called FLASH radiotherapy, appears to reduce normal tissue damage without compromising tumor response. The aim of this study was to clarify whether FLASH exposure of proton beam would be effective in reducing the DNA strand break induction. We applied a simple model system, pBR322 plasmid DNA in aqueous 1 × TE solution, where DNA single strand breaks (SSBs) and double strand breaks (DSBs) can be precisely quantified by gel electrophoresis. Plasmid DNA were exposed to 27.5 MeV protons in the conventional dose rate of 0.05 Gy/s (CONV) and ultra-high dose rate of 40 Gy/s (FLASH). With both dose rate, the kinetics of the SSB and DSB induction were proportional to absorbed dose. The SSB induction of FLASH was significantly less than CONV, which were 8.79 ± 0.14 (10-3 SSB per Gy per molecule) and 10.8 ± 0.68 (10-3 SSB per Gy per molecule), respectively. The DSB induction of FLASH was also slightly less than CONV, but difference was not significant. Altogether, 27.5 MeV proton beam at 40 Gy/s reduced SSB and not DSB, thus its effect may not be significant in reducing lethal DNA damage that become apparent in acute radiation effect.


Asunto(s)
Daño del ADN , Protones , ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Plásmidos , Agua
4.
J Radiat Res ; 62(1): 73-78, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33302296

RESUMEN

Alopecia is one of the common symptoms after high-dose radiation exposure. In our experiments, neonatal mice that received 7 Gy X-ray exhibited defects in overall hair growth, except for their cheeks. This phenomenon might suggest that some substances were secreted and prevented hair follicle loss in the infant tissues around their cheeks after radiation damage. In this study, we focused on exosome-like vesicles (ELV) secreted from cheek skin tissues and back skin tissues, as control, and examined their radiation protective effects on mouse fibroblast cell lines. We observed that ELV from irradiated cheek skin showed protective effects from radiation. Our results suggest that ELV from radiation-exposed cheek skin tissue is one of the secreted factors that prevent hair follicle loss after high-dose radiation.


Asunto(s)
Mejilla/fisiología , Mejilla/efectos de la radiación , Vesículas Extracelulares/metabolismo , Animales , Animales Recién Nacidos , Supervivencia Celular/efectos de la radiación , Ensayo de Unidades Formadoras de Colonias , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Vesículas Extracelulares/efectos de la radiación , Femenino , Fibroblastos/efectos de la radiación , Cabello/crecimiento & desarrollo , Masculino , Piel/efectos de la radiación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...