Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Rheumatol ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689140

RESUMEN

Granzymes (granule-secreted enzymes) are a family of serine proteases that have been viewed as redundant cytotoxic enzymes since their discovery more than 30 years ago. Predominantly produced by cytotoxic lymphocytes and natural killer cells, granzymes are delivered into the cytoplasm of target cells through immunological synapses in cooperation with the pore-forming protein perforin. After internalization, granzymes can initiate cell death through the cleavage of intracellular substrates. However, evidence now also demonstrates the existence of non-cytotoxic, pro-inflammatory, intracellular and extracellular functions that are granzyme specific. Under pathological conditions, granzymes can be produced and secreted extracellularly by immune cells as well as by non-immune cells. Depending on the granzyme, accumulation in the extracellular milieu might contribute to inflammation, tissue injury, impaired wound healing, barrier dysfunction, osteoclastogenesis and/or autoantigen generation.

4.
Lab Invest ; 103(6): 100123, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36849037

RESUMEN

Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis. TSP-1 is significantly diminished in eyes with AMD, although the mechanisms involved in its reduction are unknown. Granzyme B (GzmB) is a serine protease with an increased extracellular activity in the outer retina and choroid of human eyes with nAMD-related choroidal neovascularization (CNV). This study investigated whether TSP-1 and TSP-2 are GzmB substrates using in silico and cell-free cleavage assays and explored the relationship between GzmB and TSP-1 in human eyes with nAMD-related CNV and the effect of GzmB on TSP-1 in retinal pigment epithelial culture and an explant choroid sprouting assay (CSA). In this study, TSP-1 and TSP-2 were identified as GzmB substrates. Cell-free cleavage assays substantiated the GzmB proteolysis of TSP-1 and TSP-2 by showing dose-dependent and time-dependent cleavage products. TSP-1 and TSP-2 proteolysis were hindered by the inhibition of GzmB. In the retinal pigment epithelium and choroid of human eyes with CNV, we observed a significant inverse correlation between TSP-1 and GzmB, as indicated by lower TSP-1 and higher GzmB immunoreactivity. In CSA, the vascular sprouting area increased significantly with GzmB treatment and reduced significantly with TSP-1 treatment. Western blot showed significantly reduced expression of TSP-1 in GzmB-treated retinal pigment epithelial cell culture and CSA supernatant compared with that in controls. Together, our findings suggest that the proteolysis of antiangiogenic factors such as TSP-1 by extracellular GzmB might represent a mechanism through which GzmB may contribute to nAMD-related CNV. Future studies are needed to investigate whether pharmacologic inhibition of extracellular GzmB can mitigate nAMD-related CNV by preserving intact TSP-1.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Humanos , Anciano , Trombospondina 1/metabolismo , Granzimas/metabolismo , Proteolisis , Degeneración Macular/complicaciones , Degeneración Macular/metabolismo , Degeneración Macular/patología , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/etiología , Neovascularización Coroidal/metabolismo
6.
J Dermatol ; 50(2): 150-161, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36477831

RESUMEN

Pruritus is a hallmark feature in pemphigoid diseases, where it can be severe and greatly impact the quality of life of affected patients. Despite being a key symptom, the exact pathophysiological mechanisms involved in pruritus in pemphigoid are yet to be fully elucidated and effective therapies addressing them are limited. This review summarizes the present understanding of pruritus specific to pemphigoid diseases, especially the pruritogens that induce it, and the therapeutic options that have been explored so far. The majority of the available evidence is on bullous pemphigoid and epidermolysis bullosa acquisita. Histamine derived from basophils correlates with pruritus severity, with omalizumab demonstrating promising efficacy in pruritus for bullous pemphigoid. IL-4/-13 contribute to itch in bullous pemphigoid with dupilumab being evaluated in clinical trials. Other pruritogens of interest include substance P, tryptase, and thymic stromal lymphopoetin, with therapies targeting them requiring further investigation. Scratching behaviors contribute directly to blister formation through various mechanisms, such as pathological autoantibody recruitment, T helper cell type 1 polarization, and exposure of intracellular autoantigens. Treatments addressing these pathways may contribute to decreasing disease severity. Additional studies are needed to fully characterize how pruritus is regulated in pemphigoid diseases, to help pave the way to develop novel and effective therapeutics that will not only address pruritic symptoms but also decrease disease severity.


Asunto(s)
Epidermólisis Ampollosa Adquirida , Penfigoide Ampolloso , Humanos , Penfigoide Ampolloso/diagnóstico , Calidad de Vida , Epidermólisis Ampollosa Adquirida/diagnóstico , Vesícula , Prurito/tratamiento farmacológico , Prurito/etiología
7.
Am J Physiol Heart Circ Physiol ; 323(3): H528-H534, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35930445

RESUMEN

Genetically modified mice are widely used to recapitulate human diseases. Atherosclerosis can be induced in mice with low-density lipoprotein receptor (Ldlr)-deficiency and a high-fat diet (HFD). Disintegrin and metalloproteinase-17 (ADAM17) in the smooth muscle cell (SMC) contribute to vascular pathologies, and hence its role in atherosclerosis was investigated. Adam17 deletion in SMCs by Sm22α-Cre driver (Ldlr-/-/Adam17Sm22Cre) and HFD resulted in severe skin lesions in >70% of mice, associated with skin inflammation, which was not observed in Ldlr-/--HFD, nor in mice with SMC deficiency of Adam17 by a different Cre driver (Ldlr-/-/Adam17Myh11Cre). We found that Sm22α is highly expressed in keratinocytes (compared with SMCs), which could underlie the observed skin lesion in Ldlr-/-/Adam17Sm22Cre-HFD. Although expression of Sm22α in non-SMCs has been reported, this is the first study demonstrating a severe side effect resulting from the off-target expression of Sm22α-Cre, resulting in ADAM17 loss in keratinocytes that led to a moribund state.NEW & NOTEWORTHY Although Sm22α-Cre is commonly used to target gene deletion in smooth muscle cells, Sm22α-derived Adam17 deletion resulted in unexpected severe skin lesions following high-fat diet feeding in a model of atherosclerosis. Adam17 deletion by a different SMC driver, Myh11-Cre, did not result in skin lesions in the same atherosclerosis model. Sm22α is highly expressed in keratinocytes, causing ectopic loss of ADAM17 in keratinocytes that caused significant epidermal lesions when combined with a high-fat diet.


Asunto(s)
Aterosclerosis , Músculo Liso Vascular , Animales , Aterosclerosis/patología , Humanos , Integrasas , Queratinocitos/patología , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo
10.
J Dermatol Sci ; 104(2): 76-82, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34772583

RESUMEN

Dysregulated skin immunity is a hallmark of many skin diseases such as atopic dermatitis, autoimmune blistering diseases, and interface dermatitis. Current treatment options for the inflammatory skin diseases are limited and sometimes ineffective, therefore further understanding of pathomechanisms in the inflammatory skin conditions is necessary to develop new therapeutic alternatives. Recent studies suggest that the serine protease, granzyme B, is a key mediator in multiple inflammatory skin diseases, implying that strategies targeting granzyme B may be an attractive treatment option for such diseases. Specifically, granzyme B exhibits not only an intracellular apoptotic function but also extracellular proteolytic roles in inflammatory skin diseases including infectious diseases, pemphigoid diseases, atopic dermatitis, alopecia areata, and interface dermatitis. In this review, we summarize the current understanding with respect to the functions of granzyme B in the pathomechanism of various inflammatory skin diseases and evaluate the possibility of therapeutics targeting granzyme B.


Asunto(s)
Granzimas/metabolismo , Enfermedades de la Piel/metabolismo , Alopecia Areata/metabolismo , Animales , Dermatitis Atópica/metabolismo , Granzimas/inmunología , Humanos , Enfermedades Cutáneas Infecciosas/metabolismo , Enfermedades Cutáneas Vesiculoampollosas/metabolismo
11.
NPJ Aging Mech Dis ; 7(1): 6, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674592

RESUMEN

Pressure injuries (PIs), also known as bedsores or pressure ulcers, are a major cause of death and morbidity in the elderly. The serine protease, Granzyme B (GzmB), contributes to skin aging and impaired wound healing. Aging is a major risk factor for PIs; thus, the role of GzmB in PI pathogenesis was investigated. GzmB levels in human PI tissue and wound fluids were markedly elevated. A causative role for GzmB was assessed in GzmB knockout (GzmB-/-) and wild-type (WT) mice using a murine model of PI. An apolipoprotein E knockout (ApoE-/-) model of aging and vascular dysfunction was also utilized to assess GzmB in a relevant age-related model better resembling tissue perfusion in the elderly. PI severity displayed no difference between young GzmB-/- and WT mice. However, in aged mice, PI severity was reduced in mice lacking GzmB. Mechanistically, GzmB increased vascular wall inflammation and impaired extracellular matrix remodeling. Together, GzmB is an important contributor to age-dependent impaired PI healing.

12.
Nat Commun ; 12(1): 302, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436591

RESUMEN

Pemphigoid diseases refer to a group of severe autoimmune skin blistering diseases characterized by subepidermal blistering and loss of dermal-epidermal adhesion induced by autoantibody and immune cell infiltrate at the dermal-epidermal junction and upper dermis. Here, we explore the role of the immune cell-secreted serine protease, granzyme B, in pemphigoid disease pathogenesis using three independent murine models. In all models, granzyme B knockout or topical pharmacological inhibition significantly reduces total blistering area compared to controls. In vivo and in vitro studies show that granzyme B contributes to blistering by degrading key anchoring proteins in the dermal-epidermal junction that are necessary for dermal-epidermal adhesion. Further, granzyme B mediates IL-8/macrophage inflammatory protein-2 secretion, lesional neutrophil infiltration, and lesional neutrophil elastase activity. Clinically, granzyme B is elevated and abundant in human pemphigoid disease blister fluids and lesional skin. Collectively, granzyme B is a potential therapeutic target in pemphigoid diseases.


Asunto(s)
Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/patología , Granzimas/antagonistas & inhibidores , Granzimas/metabolismo , Animales , Autoantígenos/metabolismo , Vesícula , Quimiocina CXCL2/metabolismo , Factores Quimiotácticos/farmacología , Modelos Animales de Enfermedad , Epidermólisis Ampollosa/enzimología , Epidermólisis Ampollosa/patología , Humanos , Inflamación/patología , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Infiltración Neutrófila/efectos de los fármacos , Colágenos no Fibrilares/metabolismo , Penfigoide Ampolloso/enzimología , Penfigoide Ampolloso/patología , Índice de Severidad de la Enfermedad , Colágeno Tipo XVII
13.
J Invest Dermatol ; 141(1): 36-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32504614

RESUMEN

Atopic dermatitis (AD) is the most common inflammatory skin condition. Skin barrier dysfunction is of major importance in AD because it facilitates allergen sensitization and systemic allergic responses. Long regarded as a pro-apoptotic protease, emerging studies indicate granzyme B (GzmB) to have extracellular roles involving the proteolytic cleavage of extracellular matrix, cell adhesion proteins, and basement membrane proteins. Minimally expressed in normal skin, GzmB is elevated in AD and is positively correlated with disease severity and pruritus. We hypothesized that GzmB contributes to AD through extracellular protein cleavage. A causative role for GzmB was assessed in an oxazolone-induced murine model of dermatitis, comparing GzmB-/- mice with wild-type mice, showing significant reductions in inflammation, epidermal thickness, and lesion formation in GzmB-/- mice. Topical administration of a small-molecule GzmB inhibitor reduced disease severity compared with vehicle-treated controls. Mechanistically, GzmB impaired epithelial barrier function through E-cadherin and FLG cleavage. GzmB proteolytic activity contributes to impaired epidermal barrier function and represents a valid therapeutic target for AD.


Asunto(s)
Cadherinas/metabolismo , Dermatitis Atópica/metabolismo , Granzimas/metabolismo , Oxazolona/efectos adversos , Proteínas S100/metabolismo , Animales , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Epidermis/metabolismo , Matriz Extracelular/metabolismo , Proteínas Filagrina , Humanos
14.
Front Immunol ; 11: 574, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318066

RESUMEN

Granzymes are a family of serine proteases first shown to be intracellular initiators of immune-mediated cell death in target pathogenic cells. In addition to its intracellular role, Granzyme B (GzmB) has important extracellular functions in immune regulation and extracellular matrix (ECM) degradation. Verified substrates of extracellular GzmB activity include tight junctional and ECM proteins. Interestingly, little is known about the activity of GzmB in the outer human retina, a tissue in which the degradation of the tight junctional contacts of retinal pigment epithelial (RPE) cells and within the external limiting membrane, as well as remodeling of the ECM in Bruch's membrane, cause the breakdown of the blood-retinal barrier and slowing of metabolite transport between neuroretina and choroidal blood supply. Such pathological changes in outer retina signal early events in the development of age-related macular degeneration (AMD), a multifactorial, chronic inflammatory eye disease. This study is the first to focus on the distribution of GzmB in the outer retina of the healthy and diseased post-mortem human eye. Our results revealed that GzmB is present in RPE and choroidal mast cells. More immunoreactive cells are present in older (>65 years) compared to younger (<55 years) donor eyes, and choroidal immunoreactive cells are more numerous in eyes with choroidal neovascularization (CNV), while RPE immunoreactive cells are more numerous in eyes with soft drusen, an early AMD event. In vitro studies demonstrated that RPE-derived tight junctional and ECM proteins are cleaved by exogenous GzmB stimulation. These results suggest that the increased presence of GzmB immunoreactive cells in outer retina of older (healthy) eyes as well as in diseased eyes with CNV (from AMD) and eyes with soft drusen exacerbate ECM remodeling in the Bruch's membrane and degradation of the blood-retinal barrier. Currently there are no treatments that prevent remodeling of the Bruch's membrane and/or the loss of function of the outer blood-retinal barrier, known to promote early AMD changes, such as drusen deposition, RPE dysfunction and pro-inflammation. Specific inhibitors of GzmB, already in preclinical studies for non-ocular diseases, may provide new strategies to stop these early events associated with the development of AMD.


Asunto(s)
Coroides/enzimología , Neovascularización Coroidal/enzimología , Matriz Extracelular/enzimología , Granzimas/metabolismo , Epitelio Pigmentado de la Retina/enzimología , Adulto , Anciano , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Mastocitos/enzimología , Persona de Mediana Edad , Retina/enzimología , Uniones Estrechas/metabolismo
15.
Expert Opin Ther Targets ; 23(9): 745-754, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31461387

RESUMEN

Introduction: Granzyme B is a serine protease traditionally understood as having a role in immune-mediated cytotoxicity. Over the past decade, this dogma has been challenged, with a new appreciation that granzyme B can exert alternative extracellular roles detrimental to wound closure and remodeling. Granzyme B is elevated in response to tissue injury, chronic inflammation and/or autoimmune skin diseases, resulting in impaired wound healing. Areas covered: This review provides a historical background of granzyme B and a description of how it is regulated. Details are provided on the role of granzyme B in apoptosis as well as newly identified extracellular roles, focusing on those affecting wound healing, including on inflammation, dermal-epidermal junction separation, re-epithelialization, scarring and fibrosis, and autoimmunity. Finally, the use of pharmacological granzyme B inhibitors as potential therapeutic options for wound treatment is discussed. Expert opinion: Endogenous extracellular granzyme B inhibitors have not been identified in human bio-fluids, thus in chronic wound environments granzyme B appears to remain uncontrolled and unregulated. In response, targeted granzyme B inhibitors have been developed for therapeutic applications in wounds. Animal studies trialing inhibitors of granzyme B show improved healing outcomes, and may therefore provide a novel therapeutic approach for wound treatment.


Asunto(s)
Granzimas/antagonistas & inhibidores , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/patología , Granzimas/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/patología , Heridas y Lesiones/patología
16.
Front Immunol ; 10: 1454, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31297118

RESUMEN

Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Dermis/inmunología , Epidermis/inmunología , Penfigoide Ampolloso/inmunología , Péptido Hidrolasas/inmunología , Dermis/patología , Epidermis/patología , Humanos , Penfigoide Ampolloso/patología
17.
Sci Rep ; 8(1): 9690, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946113

RESUMEN

In healthy skin, epidermis and dermis are anchored together at the dermal-epidermal junction (DEJ), a specialized basement membrane pivotal for skin integrity and function. However, increased inflammation in the DEJ is associated with the disruption and separation of this junction and sub-epidermal blistering. Granzyme B (GzmB) is a serine protease secreted by immune cells. Dysregulated inflammation may lead to increased GzmB accumulation and proteolysis in the extracellular milieu. Although elevated GzmB is observed at the level of the DEJ in inflammatory and blistering skin conditions, the present study is the first to explore GzmB in the context of DEJ degradation in autoimmune sub-epidermal blistering. In the present study, GzmB induced separation of the DEJ in healthy human skin. Subsequently, α6/ß4 integrin, collagen VII, and collagen XVII were identified as extracellular substrates for GzmB through western blot, and specific cleavage sites were identified by mass spectrometry. In human bullous pemphigoid, dermatitis herpetiformis, and epidermolysis bullosa acquisita, GzmB was elevated at the DEJ when compared to healthy samples, while α6/ß4 integrin, collagen VII, and collagen XVII were reduced or absent in the area of blistering. In summary, our results suggest that regardless of the initial causation of sub-epidermal blistering, GzmB activity is a common final pathway that could be amenable to a single targeted treatment approach.


Asunto(s)
Epidermis/metabolismo , Granzimas/metabolismo , Piel/metabolismo , Autoantígenos/metabolismo , Dermatitis Herpetiforme/metabolismo , Dermis/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Colágenos no Fibrilares/metabolismo , Penfigoide Ampolloso/metabolismo , Espectrometría de Masas en Tándem , Colágeno Tipo XVII
18.
Exp Mol Med ; 50(5): 1-11, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849046

RESUMEN

Granzyme B (GzmB) is a serine protease that has long been thought to function exclusively in lymphocyte-mediated apoptosis. In recent years, this paradigm has been revisited due to the recognition that GzmB accumulates in the extracellular milieu in many autoimmune and chronic inflammatory disorders, and contributes to impaired tissue remodeling due to the cleavage of extracellular matrix proteins. Knockout studies suggest that GzmB-mediated cleavage of decorin (DCN) contributes to impaired collagen fibrillogenesis and remodeling. As DCN is anti-fibrotic and contributes to reduced hypertrophic scarring, GzmB-induced DCN cleavage could play a role in wound healing following burn injury. In the present study, a novel, gel-formulated, first-in-class small-molecule inhibitor of GzmB, VTI-1002, was assessed in a murine model of impaired, diabetic burn wound healing. VTI-1002 exhibited high specificity, potency, and target selectivity. Gel-formulated VTI-1002 was able to penetrate the stratum corneum and was retained in the skin with minimal systemic absorption. Daily topical administration of VTI-1002 gel for 30 days following thermal injury showed significantly accelerated wound closure, increased DCN protein levels, and collagen organization that was translated into significantly increased wound tensile strength compared to controls. Overall, VTI-1002 gel was well-tolerated in vivo and no adverse events were observed. Topical application of VTI-1002 represents a novel therapeutic approach for the treatment of cutaneous burn wounds.


Asunto(s)
Quemaduras/patología , Granzimas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Cicatriz/patología , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Granzimas/metabolismo , Masculino , Ratones Endogámicos C57BL
19.
J Cell Sci ; 130(14): 2329-2343, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28596238

RESUMEN

During healing of the skin, the cytoskeleton of keratinocytes and their matrix adhesions, including focal adhesions (FAs), undergo reorganization. These changes are coordinated by small GTPases and their regulators, including the guanine nucleotide exchange factor ß-PIX (also known as ARHGEF7). In fibroblasts, ß-PIX activates small GTPases, thereby enhancing migration. In keratinocytes in vitro, ß-PIX localizes to FAs. To study ß-PIX functions, we generated ß-PIX knockdown keratinocytes. During wound closure of ß-PIX knockdown cell monolayers, disassembly of FAs is impaired, and their number and size are increased. In addition, in the ß-PIX knockdown cells, phosphorylated myosin light chain (MLC; also known as MYL2) is present not only in the leading edge of cells at the wound front, but also in the cells following the front, while p21-activated kinase 2 (PAK2), a regulator of MLC kinase (MYLK), is mislocalized. Inhibition or depletion of MYLK restores FA distribution in ß-PIX knockdown cells. Traction forces generated by ß-PIX knockdown cells are increased relative to those in control cells, a result consistent with an unexpected enhancement in the migration of single ß-PIX knockdown cells and monolayers of such cells. We propose that targeting ß-PIX might be a means of promoting epithelialization of wounds in vivo.


Asunto(s)
Adhesiones Focales/metabolismo , Queratinocitos/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/deficiencia , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Movimiento Celular/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Queratinocitos/citología , Quinasa de Cadena Ligera de Miosina/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Quinasas p21 Activadas/metabolismo
20.
FASEB J ; 30(6): 2298-310, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26936359

RESUMEN

During wound healing of the skin, keratinocytes disassemble hemidesmosomes and reorganize their actin cytoskeletons in order to exert traction forces on and move directionally over the dermis. Nonetheless, the transmembrane hemidesmosome component collagen XVII (ColXVII) is found in actin-rich lamella, situated behind the lamellipodium. A set of actin bundles, along which ColXVII colocalizes with actinin4, is present at each lamella. Knockdown of either ColXVII or actinin4 not only inhibits directed migration of keratinocytes but also relieves constraints on actin bundle retrograde movement at the site of lamella, such that actin bundle movement is enhanced more than 5-fold. Moreover, whereas control keratinocytes move in a stepwise fashion over a substrate by generating alternating traction forces, of up to 1.4 kPa, at each flank of the lamellipodium, ColXVII knockdown keratinocytes fail to do so. In summary, our data indicate that ColXVII-actinin4 complexes at the lamella of a moving keratinocyte regulate actin dynamics, thereby determining the direction of cell movement.-Hiroyasu, S., Colburn, Z. T., Jones, J. C. R. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes.


Asunto(s)
Actinas/fisiología , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Regulación de la Expresión Génica/fisiología , Hemidesmosomas/fisiología , Queratinocitos/fisiología , Actinina/genética , Actinina/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Fenómenos Biomecánicos , Línea Celular , Células Epidérmicas , Técnicas de Silenciamiento del Gen , Humanos , Colágenos no Fibrilares/genética , Colágenos no Fibrilares/metabolismo , Propiedades de Superficie , Colágeno Tipo XVII
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...