Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(5): E869-E878, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096388

RESUMEN

Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition.


Asunto(s)
Calmodulina/metabolismo , Síndrome de QT Prolongado/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Células CHO , Señalización del Calcio , Calmodulina/química , Cricetinae , Cricetulus , Humanos , Proteínas Inmovilizadas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Mutación Puntual , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/genética , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...