Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 50(8): 1358-68, 2010 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-20681581

RESUMEN

In many large chemoinformatics database systems, molecules are represented by long binary fingerprint vectors whose components record the presence or absence of particular functional groups or combinatorial features. To speed up database searches, we propose to add to each fingerprint a short signature integer vector of length M. For a given fingerprint, the i component of the signature vector counts the number of 1-bits in the fingerprint that fall on components congruent to i modulo M. Given two signatures, we show how one can rapidly compute a bound on the Jaccard-Tanimoto similarity measure of the two corresponding fingerprints, using the intersection bound. Thus, these signatures allow one to significantly prune the search space by discarding molecules associated with unfavorable bounds. Analytical methods are developed to predict the resulting amount of pruning as a function of M. Data structures combining different values of M are also developed together with methods for predicting the optimal values of M for a given implementation. Simulations using a particular implementation show that the proposed approach leads to a 1 order of magnitude speedup over a linear search and a 3-fold speedup over a previous implementation. All theoretical results and predictions are corroborated by large-scale simulations using molecules from the ChemDB. Several possible algorithmic extensions are discussed.


Asunto(s)
Algoritmos , Bases de Datos Factuales , Informática/métodos , Química/métodos , Simulación por Computador , Informática/economía , Modelos Químicos , Estructura Molecular
2.
J Chem Inf Model ; 49(8): 1866-70, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19601605

RESUMEN

Bounds on distances or similarity measures can be useful to help search large databases efficiently. Here we consider the case of large databases of small molecules represented by molecular fingerprint vectors with the Tanimoto similarity measure. We derive a new intersection inequality which provides a bound on the Tanimoto similarity between two fingerprint vectors and show that this bound is considerably sharper than the bound associated with the triangle inequality of the Tanimoto distance. The inequality can be applied to other intersection-based similarity measures. We introduce a new integer representation which relies on partitioning the fingerprint components, for instance by taking components modulo some integer M and reporting the total number of 1-bits falling in each partition. We show how the intersection inequality can be generalized immediately to these integer representations and used to search large databases of binary fingerprint vectors efficiently.


Asunto(s)
Algoritmos , Bases de Datos Factuales , Estructura Molecular
3.
J Chem Inf Model ; 48(7): 1367-78, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18593143

RESUMEN

In many large chemoinformatics database systems, molecules are represented by long binary fingerprint vectors whose components record the presence or absence in the molecular graphs of particular functional groups or combinatorial features, such as labeled paths or labeled trees. To speed up database searches, we propose to store with each fingerprint a small header vector containing primarily the result of applying the logical exclusive OR (XOR) operator to the fingerprint vector after modulo wrapping to a smaller number of bits, such as 128 bits. From the XOR headers of two molecules, tight bounds on the intersection and union of their fingerprint vectors can be rapidly obtained, yielding tight bounds on derived similarity measures, such as the Tanimoto measure. During a database search, every time these bounds are unfavorable, the corresponding molecule can be rapidly discarded with no need for further inspection. We derive probabilistic models that allow us to estimate precisely the behavior of the XOR headers and the level of pruning under different conditions in terms of similarity threshold and fingerprint density. These theoretical results are corroborated by experimental results on a large set of molecules. For a Tanimoto threshold of 0.5 (respectively 0.9), this approach requires searching less than 50% (respectively 10%) of the database, leading to typical search speedups of 2 to 3 times over the previous state-of-the-art.


Asunto(s)
Química , Sistemas de Administración de Bases de Datos , Almacenamiento y Recuperación de la Información , Fenómenos Químicos , Modelos Químicos
4.
J Chem Inf Model ; 47(6): 2098-109, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17967006

RESUMEN

Many modern chemoinformatics systems for small molecules rely on large fingerprint vector representations, where the components of the vector record the presence or number of occurrences in the molecular graphs of particular combinatorial features, such as labeled paths or labeled trees. These large fingerprint vectors are often compressed to much shorter fingerprint vectors using a lossy compression scheme based on a simple modulo procedure. Here, we combine statistical models of fingerprints with integer entropy codes, such as Golomb and Elias codes, to encode the indices or the run lengths of the fingerprints. After reordering the fingerprint components by decreasing frequency order, the indices are monotone-increasing and the run lengths are quasi-monotone-increasing, and both exhibit power-law distribution trends. We take advantage of these statistical properties to derive new efficient, lossless, compression algorithms for monotone integer sequences: monotone value (MOV) coding and monotone length (MOL) coding. In contrast to lossy systems that use 1024 or more bits of storage per molecule, we can achieve lossless compression of long chemical fingerprints based on circular substructures in slightly over 300 bits per molecule, close to the Shannon entropy limit, using a MOL Elias Gamma code for run lengths. The improvement in storage comes at a modest computational cost. Furthermore, because the compression is lossless, uncompressed similarity (e.g., Tanimoto) between molecules can be computed exactly from their compressed representations, leading to significant improvements in retrival performance, as shown on six benchmark data sets of druglike molecules.


Asunto(s)
Entropía , Modelos Químicos , Estructura Molecular , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA