Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37766145

RESUMEN

The rapid evolution of new SARS-CoV-2 variants poses a continuing threat to human health. Vaccination has become the primary therapeutic intervention. The goal of the current work was the construction of immunogenic virus-like particles (VLPs). Here, we describe a human cell line for cost-efficient and scalable production of immunogenic SARS-CoV-2 VLPs. The modular design of the VLP-production platform facilitates rapid adaptation to new variants. Methods: The N, M-, and E-protein genes were integrated into the genome of Expi293 cells (ExpiVLP_MEN). Subsequently, this cell line was further modified for the constitutive expression of the SARS-CoV-2 spike protein. The resulting cell line (ExpiVLP_SMEN) released SARS-CoV-2 VLP upon exposure to doxycycline. ExpiVLP_SMEN cells were readily adapted for VLP production in a 5 L bioreactor. Purified VLPs were quantified by Western blot, ELISA, and nanoparticle tracking analysis and visualized by electron microscopy. Immunogenicity was tested in mice. Results: The generated VLPs contained all four structural proteins, are within the size range of authentic SARS-CoV-2 virus particles, and reacted strongly and specifically with immunoserum from naturally infected individuals. The VLPs were stable in suspension at 4 °C for at least 10 weeks. Mice immunized with VLPs developed neutralizing antibodies against lentiviruses pseudotyped with the SARS-CoV-2 spike protein. The flexibility of the VLP-production platform was demonstrated by the rapid switch of the spike protein to a new variant of concern (BA.1/Omicron). The present study describes an efficient, scalable, and adaptable production method of immunogenic SARS-CoV-2 VLPs with therapeutic potential.

2.
Antibodies (Basel) ; 11(4)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36546901

RESUMEN

A key in controlling the SARS-CoV-2 pandemic is the assessment of the immune status of the population. We explored the utility of SARS-CoV-2 virus-like particles (VLPs) as antigens to detect specific humoral immune reactions in an enzyme-linked immunosorbent assay (ELISA). For this purpose, SARS-CoV-2 VLPs were produced from an engineered cell line and characterized by Western blot, ELISA, and nanoparticle tracking analysis. Subsequently, we collected 42 serum samples from before the pandemic (2014), 89 samples from healthy subjects, and 38 samples from vaccinated subjects. Seventeen samples were collected less than three weeks after infection, and forty-four samples more than three weeks after infection. All serum samples were characterized for their reactivity with VLPs and the SARS-CoV-2 N- and S-protein. Finally, we compared the performance of the VLP-based ELISA with a certified in vitro diagnostic device (IVD). In the applied set of samples, we determined a sensitivity of 95.5% and a specificity of 100% for the certified IVD. There were seven samples with an uncertain outcome. Our VLP-ELISA demonstrated a superior performance, with a sensitivity of 97.5%, a specificity of 100%, and only three uncertain outcomes. This result warrants further research to develop a certified IVD based on SARS-CoV-2 VLPs as an antigen.

3.
Front Immunol ; 13: 930975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189209

RESUMEN

Introduction: The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives: In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods: Five antibody candidates were selected out of a naïve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results: All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion: Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Inmunoglobulina G , Cadenas Pesadas de Inmunoglobulina/genética , Pandemias , SARS-CoV-2
4.
Front Cell Neurosci ; 15: 792652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35173582

RESUMEN

Rapid removal of glutamate from the sites of glutamate release is an essential step in excitatory synaptic transmission. However, despite many years of research, the molecular mechanisms underlying the intracellular regulation of glutamate transport at tripartite synapses have not been fully uncovered. This limits the options for pharmacological treatment of glutamate-related motor disorders, including Huntington's disease (HD). We therefore investigated the possible binding partners of transgenic EAAT2 and their alterations under the influence of mutant huntingtin (mHTT). Mass spectrometry analysis after pull-down of striatal YFP-EAAT2 from wild-type (WT) mice and heterozygote (HET) Q175 mHTT-knock-in mice identified a total of 148 significant (FDR < 0.05) binders to full-length EAAT2. Of them 58 proteins exhibited mHTT-related differences. Most important, in 26 of the 58 mHTT-sensitive cases, protein abundance changed back toward WT levels when the mice expressed a C-terminal-truncated instead of full-length variant of EAAT2. These findings motivated new attempts to clarify the role of astrocytic EAAT2 regulation in cortico-basal movement control. Striatal astrocytes of Q175 HET mice were targeted by a PHP.B vector encoding EAAT2 with different degree of C-terminal modification, i.e., EAAT2-S506X (truncation at S506), EAAT2-4KR (4 lysine to arginine substitutions) or EAAT2 (full-length). The results were compared to HET and WT injected with a tag-only vector (CTRL). It was found that the presence of a C-terminal-modified EAAT2 transgene (i) increased the level of native EAAT2 protein in striatal lysates and perisynaptic astrocyte processes, (ii) enhanced the glutamate uptake of transduced astrocytes, (iii) stimulated glutamate clearance at individual corticostriatal synapses, (iv) increased the glutamate uptake of striatal astrocytes and (iv) alleviated the mHTT-related hypokinesia (open field indicators of movement initiation). In contrast, over-expression of full-length EAAT2 neither facilitated glutamate uptake nor locomotion. Together, our results support the new hypothesis that preventing abnormal protein-protein interactions at the C-terminal of EAAT2 could eliminate the mHTT-related deficits in corticostriatal synaptic glutamate clearance and movement initiation.

5.
Elife ; 62017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027903

RESUMEN

The locus coeruleus (LC) projects throughout the brain and spinal cord and is the major source of central noradrenaline. It remains unclear whether the LC acts functionally as a single global effector or as discrete modules. Specifically, while spinal-projections from LC neurons can exert analgesic actions, it is not known whether they can act independently of ascending LC projections. Using viral vectors taken up at axon terminals, we expressed chemogenetic actuators selectively in LC neurons with spinal (LC:SC) or prefrontal cortex (LC:PFC) projections. Activation of the LC:SC module produced robust, lateralised anti-nociception while activation of LC:PFC produced aversion. In a neuropathic pain model, LC:SC activation reduced hind-limb sensitisation and induced conditioned place preference. By contrast, activation of LC:PFC exacerbated spontaneous pain, produced aversion and increased anxiety-like behaviour. This independent, contrasting modulation of pain-related behaviours mediated by distinct noradrenergic neuronal populations provides evidence for a modular functional organisation of the LC.


Asunto(s)
Ansiedad , Locus Coeruleus/fisiología , Vías Nerviosas/fisiología , Neuronas/fisiología , Dolor Nociceptivo , Animales , Modelos Neurológicos , Corteza Prefrontal/fisiología , Ratas , Médula Espinal/fisiología
6.
PLoS One ; 11(4): e0153187, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27077912

RESUMEN

Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as ß-endorphin, which has a key role in endogenous analgesia. The ß-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.


Asunto(s)
Analgesia , Bradicardia/metabolismo , Tronco Encefálico/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Insuficiencia Respiratoria/metabolismo , Analgésicos Opioides/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Channelrhodopsins , Femenino , Masculino , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones Transgénicos , Microscopía Confocal , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Neuronas/efectos de los fármacos , Núcleo Solitario/citología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/metabolismo
7.
Brain Res ; 1641(Pt B): 274-90, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26903420

RESUMEN

Noradrenergic neurons of the brainstem extend projections throughout the neuraxis to modulate a wide range of processes including attention, arousal, autonomic control and sensory processing. A spinal projection from the locus coeruleus (LC) is thought to regulate nociceptive processing. To characterize and selectively manipulate the pontospinal noradrenergic neurons in rats, we implemented a retrograde targeting strategy using a canine adenoviral vector to express channelrhodopsin2 (CAV2-PRS-ChR2-mCherry). LC microinjection of CAV2-PRS-ChR2-mCherry produced selective, stable, transduction of noradrenergic neurons allowing reliable opto-activation in vitro. The ChR2-transduced LC neurons were opto-identifiable in vivo and functional control was demonstrated for >6 months by evoked sleep-wake transitions. Spinal injection of CAV2-PRS-ChR2-mCherry retrogradely transduced pontine noradrenergic neurons, predominantly in the LC but also in A5 and A7. A pontospinal LC (ps:LC) module was identifiable, with somata located more ventrally within the nucleus and with a discrete subset of projection targets. These ps:LC neurons had distinct electrophysiological properties with shorter action potentials and smaller afterhyperpolarizations compared to neurons located in the core of the LC. In vivo recordings of ps:LC neurons showed a lower spontaneous firing frequency than those in the core and they were all excited by noxious stimuli. Using this CAV2-based approach we have demonstrated the ability to retrogradely target, characterise and optogenetically manipulate a central noradrenergic circuit and show that the ps:LC module forms a discrete unit. This article is part of a Special Issue entitled SI: Noradrenergic System.


Asunto(s)
Locus Coeruleus/citología , Locus Coeruleus/fisiología , Neuronas/citología , Neuronas/fisiología , Optogenética , Adenovirus Caninos/genética , Animales , Cerebelo/citología , Cerebelo/fisiología , Vectores Genéticos , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Masculino , Potenciales de la Membrana/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Norepinefrina/metabolismo , Optogenética/métodos , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Ratas Long-Evans , Ratas Wistar , Sueño/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Técnicas de Cultivo de Tejidos , Vigilia/fisiología
8.
Proc Natl Acad Sci U S A ; 109(30): 12201-6, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22778407

RESUMEN

Sensory circuits are shaped by experience in early postnatal life and in many brain areas late maturation of inhibition drives activity-dependent development. In the newborn spinal dorsal horn, activity is dominated by inputs from low threshold A fibers, whereas nociceptive C-fiber inputs mature gradually over the first postnatal weeks. How this changing afferent input influences the maturation of dorsal horn inhibition is not known. We show an absence of functional glycinergic inhibition in newborn dorsal horn circuits: Dorsal horn receptive fields and afferent-evoked excitation are initially facilitated by glycinergic activity due, at least in part, to glycinergic disinhibition of GAD67 cells. Glycinergic inhibitory control emerges in the second postnatal week, coinciding with an expression switch from neonatal α(2) homomeric to predominantly mature α(1)/ß glycine receptors (GlyRs). We further show that the onset of glycinergic inhibition depends upon the maturation of C-fiber inputs to the dorsal horn: selective block of afferent C fibers in postnatal week 2, using perisciatic injections of the cationic anesthetic QX-314, lidocaine, and capsaicin, delays the maturation of both GlyR subunits and glycinergic inhibition, maintaining dorsal neurons in a neonatal state, where tactile responses are facilitated, rather than inhibited, by glycinergic network activity. Thus, glycine may serve to facilitate tactile A-fiber-mediated information and enhance activity-dependent synaptic strengthening in the immature dorsal horn. This period ceases in the second postnatal week with the maturation of C-fiber spinal input, which triggers postsynaptic changes leading to glycinergic inhibition and only then is balanced excitation and inhibition achieved in dorsal horn sensory circuits.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Fibras Nerviosas Amielínicas/metabolismo , Inhibición Neural/fisiología , Células del Asta Posterior/metabolismo , Receptores de Glicina/metabolismo , Percepción del Tacto/fisiología , Animales , Animales Recién Nacidos/metabolismo , Inmunohistoquímica , Interneuronas/metabolismo , Bloqueo Nervioso , Ratas , Nervio Ciático , Estricnina
9.
J Hazard Mater ; 111(1-3): 57-65, 2004 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-15231348

RESUMEN

This paper addresses one of the controversial issues in the current comparative studies of the environmental and health impacts of energy systems, i.e. the treatment of severe accidents. The work covers technical aspects of severe accidents and thus primarily reflects an engineering perspective on the energy-related risk issues, though some social implications are also touched upon. The assessment concerns fossil energy sources (coal, oil and gas), nuclear power and hydro power. The scope is not limited to the power production (conversion) step of these energy chains but, whenever applicable, also includes exploration, extraction, transports, processing, storage and waste disposal. With the exception of the nuclear chain the focus of the work has been on the evaluation of the historical experience of accidents. The basis used for this evaluation is a comprehensive database ENSAD (Energy-related Severe Accident Database), established by the Paul Scherrer Institut (PSI). For hypothetical nuclear accidents the probabilistic technique has also been employed and extended to cover the assessment of economic consequences of such accidents. The broader picture obtained by coverage of full energy chains leads on the world-wide basis to aggregated immediate fatality rates being much higher for the fossil chains than what one would expect if only power plants were considered. Generally, the immediate fatality rates are for all considered energy carriers significantly higher for the non-OECD countries than for OECD countries. In the case of hydro and nuclear the difference is in fact dramatic. The presentation of results is not limited to the aggregated values specific for each energy chain. Also frequency-consequence curves are provided. They reflect implicitly the ranking based on the aggregated values but include also such information as the observed or predicted chain-specific maximum extents of damages. This perspective on severe accidents may lead to different system rankings, depending on the individual risk aversion.


Asunto(s)
Accidentes/estadística & datos numéricos , Suministros de Energía Eléctrica/estadística & datos numéricos , Bases de Datos como Asunto , Combustibles Fósiles/estadística & datos numéricos , Salud Global , Humanos , Centrales Eléctricas/estadística & datos numéricos , Liberación de Radiactividad Peligrosa/estadística & datos numéricos , Transportes/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...