Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(12): 6144-6153, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38947977

RESUMEN

LiMn2O4 (LMO) cathodes present large stability when cycled in aqueous electrolytes, contrasting with their behavior in conventional organic electrolytes in lithium-ion batteries (LIBs). To elucidate the mechanisms underlying this distinctive behavior, we employ unconventional characterization techniques, including variable energy positron annihilation lifetime spectroscopy (VEPALS), tip-enhanced Raman spectroscopy (TERS), and macro-Raman spectroscopy (with tens of µm-size laser spot). These still rather unexplored techniques in the battery field provide complementary information across different length scales, revealing previously hidden features. VEPALS offers atomic-scale insights, uncovering cationic defects and subnanometer pores that tend to collapse with cycling. TERS, operating in the nanometric range at the surface, captured the presence of Mn3O4 and its dissolution with cycling, elucidating dynamic changes during operation. Additionally, TERS highlights the accumulation of SO4 2- at grain boundaries. Macro-Raman spectroscopy focuses on the micrometer scale, depicting small changes in the cathode's long-range order, suggesting a slow but progressive loss of crystalline quality under operation. Integrating these techniques provides a comprehensive assessment of LMO cathode stability in aqueous electrolytes, offering multifaceted insights into phase and defect evolution that can help to rationalize the origin of such stability when compared with conventional organic electrolytes. Our findings advance the understanding of LMO behavior in aqueous environments and provide guidelines for its development for next-generation LIBs.

2.
J Phys Chem Lett ; 15(17): 4560-4567, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38638089

RESUMEN

Metal-organic frameworks (MOFs) stand as pivotal porous materials with exceptional surface areas, adaptability, and versatility. Positron Annihilation Lifetime Spectroscopy (PALS) is an indispensable tool for characterizing MOF porosity, especially micro- and mesopores in both open and closed phases. Notably, PALS offers porosity insights independent of probe molecules, which is vital for detailed characterization without structural transformations. This study explores how metal ion states in MOFs affect PALS results. We find significant differences in measured porosity due to paramagnetic or oxidized metal ions compared to simulated values. By analyzing CPO-27(M) (M = Mg, Co, Ni), with identical pore dimensions, we observe distinct PALS data alterations based on metal ions. Paramagnetic Co and Ni ions hinder and quench positronium (Ps) formation, resulting in smaller measured pore volumes and sizes. Mg only quenches Ps, leading to underestimated pore sizes without volume distortion. This underscores the metal ions' pivotal role in PALS outcomes, urging caution in interpreting MOF porosity.

3.
ACS Appl Mater Interfaces ; 15(41): 48264-48276, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37796977

RESUMEN

Atmospheric water harvesting with metal-organic frameworks (MOFs) is a new technology providing a clean, long-term water supply in arid areas. In-situ positron annihilation lifetime spectroscopy (PALS) is proposed as a valid methodology for the mechanistic understanding of water sorption in MOFs and the selection of prospective candidates for desired applications. DUT-67-Zr and DUT-67-Hf frameworks are used as model systems for method validation because of their hierarchical pore structure, high adsorption capacity, and chemical stability. Both frameworks are characterized using complementary techniques, such as nitrogen (77 K) and water vapor (298 K) physisorption, SEM, and PXRD. DUT-67-Zr and DUT-67-Hf are investigated by PALS upon exposure to humidity for the first time, demonstrating the stepwise pore filling mechanism by water molecules for both MOFs. In addition to exploring the potential of PALS as a tool for probing MOFs during in situ water loading, this work offers perspectives on the design and use of MOFs for water harvesting.

4.
Sci Rep ; 13(1): 7765, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173360

RESUMEN

Flash lamp annealing (FLA) with millisecond pulse durations is reported as a novel curing method for pore precursor's degradation in thin films. A case study on the curing of dielectric thin films is presented. FLA-cured films are being investigated by means of positron annihilation spectroscopy (PAS) and Fourier-transform infrared (FTIR) spectroscopy in order to quantify the nm-scale porosity and post-treatment chemistry, respectively. Results from positron annihilation reveal the onset of the formation of porous voids inside the samples at 6 ms flash treatment time. Moreover, parameter's adjustment (flash duration and energy density) allows for identifying the optimum conditions of effective curing. Within such a systematic investigation, positron results indicate that FLA is able to decompose the porogen (pore precursors) and to generate interconnected (open porosity) or isolated pore networks with self-sealed pores in a controllable way. Furthermore, FTIR results demonstrate the structural evolution after FLA, that help for setting the optimal annealing conditions whereby only a residual amount of porogen remains and at the same time a well-densified matrix, and a hydrophobic porous structures are created. Raman spectroscopy suggests that the curing-induced self-sealing layer developed at the film surface is a graphene oxide-like layer, which could serve as the outside sealing of the pore network from intrusions.

5.
ACS Nano ; 17(7): 6973-6984, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972329

RESUMEN

Magneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties in (i) withstanding high electric fields without electric pinholes and (ii) maintaining stable ion transport during long-term actuation. In turn, the use of liquid electrolytes can result in poor cyclability, thus limiting their applicability. Here we propose a nanoscale-engineered magneto-ionic architecture (comprising a thin solid electrolyte in contact with a liquid electrolyte) that drastically enhances cyclability while preserving sufficiently high electric fields to trigger ion motion. Specifically, we show that the insertion of a highly nanostructured (amorphous-like) Ta layer (with suitable thickness and electric resistivity) between a magneto-ionic target material (i.e., Co3O4) and the liquid electrolyte increases magneto-ionic cyclability from <30 cycles (when no Ta is inserted) to more than 800 cycles. Transmission electron microscopy together with variable energy positron annihilation spectroscopy reveals the crucial role of the generated TaOx interlayer as a solid electrolyte (i.e., ionic conductor) that improves magneto-ionic endurance by proper tuning of the types of voltage-driven structural defects. The Ta layer is very effective in trapping oxygen and hindering O2- ions from moving into the liquid electrolyte, thus keeping O2- motion mainly restricted between Co3O4 and Ta when voltage of alternating polarity is applied. We demonstrate that this approach provides a suitable strategy to boost magneto-ionics by combining the benefits of solid and liquid electrolytes in a synergetic manner.

6.
Materials (Basel) ; 15(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36234257

RESUMEN

A set of GaN layers prepared by metalorganic vapor phase epitaxy under different technological conditions (growth temperature carrier gas type and Ga precursor) were investigated using variable energy positron annihilation spectroscopy (VEPAS) to find a link between technological conditions, GaN layer properties, and the concentration of gallium vacancies (VGa). Different correlations between technological parameters and VGa concentration were observed for layers grown from triethyl gallium (TEGa) and trimethyl gallium (TMGa) precursors. In case of TEGa, the formation of VGa was significantly influenced by the type of reactor atmosphere (N2 or H2), while no similar behaviour was observed for growth from TMGa. VGa formation was suppressed with increasing temperature for growth from TEGa. On the contrary, enhancement of VGa concentration was observed for growth from TMGa, with cluster formation for the highest temperature of 1100 °C. From the correlation of photoluminescence results with VGa concentration determined by VEPAS, it can be concluded that yellow band luminescence in GaN is likely not connected with VGa; additionally, increased VGa concentration enhances excitonic luminescence. The probable explanation is that VGa prevent the formation of some other highly efficient nonradiative defects. Possible types of such defects are suggested.

7.
Nat Commun ; 13(1): 5322, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085298

RESUMEN

Cuprous oxide (Cu2O) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, Cu2O thin films with ultra-low resistivity values of 0.4 Ω.cm were deposited at only 260 °C by atmospheric pressure spatial atomic layer deposition, a scalable chemical approach. The carrier concentration (7.1014-2.1018 cm-3), mobility (1-86 cm2/V.s), and optical bandgap (2.2-2.48 eV) are easily tuned by adjusting the fraction of oxygen used during deposition. The properties of the films are correlated to the defect landscape, as revealed by a combination of techniques (positron annihilation spectroscopy (PAS), Raman spectroscopy and photoluminescence). Our results reveal the existence of large complex defects and the decrease of the overall defect concentration in the films with increasing oxygen fraction used during deposition.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35830969

RESUMEN

Extending the potential window toward the 3 V plateau below the typically used range could boost the effective capacity of LiMn2O4 spinel cathodes. This usually leads to an "overdischarge" of the cathode, which can cause severe material damage due to manganese dissolution into the electrolyte and a critical volume expansion (induced by Jahn-Teller distortions). As those factors determine the stability and cycling lifetime for all-solid-state batteries, the operational window of LiMn2O4 is usually limited to 3.5-4.5 V versus Li/Li+ in common battery cells. However, it has been reported that nano-shaped particles and thin films can potentially mitigate these detrimental effects. We demonstrate here that porous LiMn2O4 thin-film cathodes with a certain level of off-stoichiometry show improved cycling stability for the extended cycling range of 2.0-4.5 V versus Li/Li+. We argue through operando spectroscopic ellipsometry that the origin of this stability lies in the surprisingly small volume change in the layer during lithiation.

9.
Small ; 18(17): e2201228, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35344270

RESUMEN

Thin films of the magnetoelectric insulator α-Cr2 O3 are technologically relevant for energy-efficient magnetic memory devices controlled by electric fields. In contrast to single crystals, the quality of thin Cr2 O3 films is usually compromised by the presence of point defects and their agglomerations at grain boundaries, putting into question their application potential. Here, the impact of the defect nanostructure, including sparse small-volume defects and their complexes is studied on the magnetic properties of Cr2 O3 thin films. By tuning the deposition temperature, the type, size, and relative concentration of defects is tailored, which is analyzed using the positron annihilation spectroscopy complemented with electron microscopy studies. The structural characterization is correlated with magnetotransport measurements and nitrogen-vacancy microscopy of antiferromagnetic domain patterns. Defects pin antiferromagnetic domain walls and stabilize complex multidomain states with a domain size in the sub-micrometer range. Despite their influence on the domain configuration, neither small open-volume defects nor grain boundaries in Cr2 O3 thin films affect the Néel temperature in a broad range of deposition parameters. The results pave the way toward the realization of spin-orbitronic devices where magnetic domain patterns can be tailored based on defect nanostructures without affecting their operation temperature.

10.
ACS Appl Mater Interfaces ; 13(26): 30826-30834, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34156228

RESUMEN

Magneto-ionics allows for tunable control of magnetism by voltage-driven transport of ions, traditionally oxygen or lithium and, more recently, hydrogen, fluorine, or nitrogen. Here, magneto-ionic effects in single-layer iron nitride films are demonstrated, and their performance is evaluated at room temperature and compared with previously studied cobalt nitrides. Iron nitrides require increased activation energy and, under high bias, exhibit more modest rates of magneto-ionic motion than cobalt nitrides. Ab initio calculations reveal that, based on the atomic bonding strength, the critical field required to induce nitrogen-ion motion is higher in iron nitrides (≈6.6 V nm-1) than in cobalt nitrides (≈5.3 V nm-1). Nonetheless, under large bias (i.e., well above the magneto-ionic onset and, thus, when magneto-ionics is fully activated), iron nitride films exhibit enhanced coercivity and larger generated saturation magnetization, surpassing many of the features of cobalt nitrides. The microstructural effects responsible for these enhanced magneto-ionic effects are discussed. These results open up the potential integration of magneto-ionics in existing nitride semiconductor materials in view of advanced memory system architectures.

11.
Sci Rep ; 10(1): 8300, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427909

RESUMEN

A recently discovered modified low-temperature baking leads to reduced surface losses and an increase of the accelerating gradient of superconducting TESLA shape cavities. We will show that the dynamics of vacancy-hydrogen complexes at low-temperature baking lead to a suppression of lossy nanohydrides at 2 K and thus a significant enhancement of accelerator performance. Utilizing Doppler broadening Positron Annihilation Spectroscopy, Positron Annihilation Lifetime Spectroscopy and instrumented nanoindentation, samples made from European XFEL niobium sheets were investigated. We studied the evolution of vacancies in bulk samples and in the sub-surface region and their interaction with hydrogen at different temperature levels during in-situ and ex-situ annealing.

12.
Proc Natl Acad Sci U S A ; 108(31): 12641-6, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21768341

RESUMEN

The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.


Asunto(s)
Fenómenos Astronómicos , Fenómenos Electromagnéticos , Medio Ambiente Extraterrestre , Gravitación , Algoritmos , Astronomía/métodos , Astronomía/estadística & datos numéricos , Galaxias , Modelos Teóricos
13.
Phys Rev Lett ; 100(19): 191101, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518432

RESUMEN

We investigate the influence of magnetic fields upon the dynamics of, and resulting gravitational waves from, a binary neutron-star merger in full general relativity coupled to ideal magnetohydrodynamics. We consider two merger scenarios: one where the stars have aligned poloidal magnetic fields and one without. Both mergers result in a strongly differentially rotating object. In comparison to the nonmagnetized scenario, the aligned magnetic fields delay the full merger of the stars. During and after merger we observe phenomena driven by the magnetic field, including Kelvin-Helmholtz instabilities in shear layers, winding of the field lines, and transition from poloidal to toroidal magnetic fields. These effects not only mediate the production of electromagnetic radiation, but also can have a strong influence on the gravitational waves. Thus, there are promising prospects for studying such systems with both types of waves.

14.
Phys Rev Lett ; 93(13): 131101, 2004 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-15524699

RESUMEN

We report a new critical solution found at the threshold of axisymmetric gravitational collapse of a complex scalar field with angular momentum. To carry angular momentum the scalar field cannot be axisymmetric; however, its azimuthal dependence is defined so that the resulting stress-energy tensor and spacetime metric are axisymmetric. The critical solution found is nonspherical, discretely self-similar with an echoing exponent Delta=0.42(+/-4%), and exhibits a scaling exponent gamma=0.11(+/-10%) in near-critical collapse. Our simulations suggest that the solution is universal (within the imposed symmetry class), modulo a family-dependent constant, complex phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...