Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753516

RESUMEN

During the formation of terrestrial planets, volatile loss may occur through nebular processing, planetesimal differentiation, and planetary accretion. We investigate iron meteorites as an archive of volatile loss during planetesimal processing. The carbon contents of the parent bodies of magmatic iron meteorites are reconstructed by thermodynamic modeling. Calculated solid/molten alloy partitioning of C increases greatly with liquid S concentration, and inferred parent body C concentrations range from 0.0004 to 0.11 wt%. Parent bodies fall into two compositional clusters characterized by cores with medium and low C/S. Both of these require significant planetesimal degassing, as metamorphic devolatilization on chondrite-like precursors is insufficient to account for their C depletions. Planetesimal core formation models, ranging from closed-system extraction to degassing of a wholly molten body, show that significant open-system silicate melting and volatile loss are required to match medium and low C/S parent body core compositions. Greater depletion in C relative to S is the hallmark of silicate degassing, indicating that parent body core compositions record processes that affect composite silicate/iron planetesimals. Degassing of bare cores stripped of their silicate mantles would deplete S with negligible C loss and could not account for inferred parent body core compositions. Devolatilization during small-body differentiation is thus a key process in shaping the volatile inventory of terrestrial planets derived from planetesimals and planetary embryos.

2.
Geochim Cosmochim Acta ; 277: 87-110, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32606478

RESUMEN

We conducted experiments at high pressure (P) and temperature (T) to measure hydrogen solubility in plagioclase (Pl) with a range of compositions (An15 to An94). Experiments were run at 700-850 °C, 0.5 GPa, and f O 2 close to either the Ni-NiO (NNO) or iron-wüstite (IW) oxygen buffers. Experiments at 700 °C on An15 (containing 0.03 wt% FeO) reveal no dependence of H solubility on f O 2 between IW and NNO, but experiments at 800-850 °C on other compositions (with 0.3-0.5 wt% FeO) demonstrate that H solubility is enhanced by a factor of ~2 to 3 at IW compared to NNO, consistent with previous experiments by Yang (2012a) on An58. By analogy with synthetic hydrogen feldspar (HAlSi3O8), we infer that the predominant mechanism for H incorporation in Pl is through bonding to O atoms adjacent to M-site vacancies, and we propose likely O sites for H incorporation based on M-O bond lengths in anhydrous Pl structures. Increased uptake of structurally bound H at low f O 2 is explained by the formation of defect associates resulting from the reduction of Fe3+ in tetrahedral sites to Fe2+, allowing additional H to be incorporated in adjacent M-site vacancies. This mechanism counteracts the expected effect of water fugacity on H solubility. We also speculate on possible substitutions of H on tetrahedral vacancies, as well as coupled H-F substitution. Enhanced incorporation of H in Pl at low f O 2 may have implications for estimating the water content of the lunar magma ocean. However, mechanisms unrelated to low f O 2 are needed to explain high H contents in terrestrial Pl xenocrysts, such as those found in basalts from the Basin and Range.

3.
J Clin Med ; 9(1)2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936478

RESUMEN

(1) Background: Knowledge about predictors for the long-time patency of recanalized chronic total coronary occlusions (CTOs) is limited. Evidence from invasive follow-up in the absence of acute coronary syndrome (routine surveillance coronary angiography) is scarce. (2) Methods: In a monocentric-retrospective analysis, we obtained baseline as well as periprocedural data of patients undergoing routine invasive follow-up. We defined target vessel failure (TVF) as a combined primary endpoint, consisting of re-occlusion, restenosis, and target vessel revascularization (TVR). (3) Results: We included 93 consecutive patients (15.1% female) from October 2013 to May 2018. After a follow-up period of 206 ± 129 days (median 185 (IQR 127-237)), re-occlusion had occurred in 7.5%, restenosis in 11.8%, and TVR in 5.4%; the cumulative incidence of TVF was 15.1%. Reduced TIMI-flow immediately after recanalization (OR for TVR: 11.0 (95% CI: 2.7-45.5), p = 0.001) as well as female gender (OR for TVR: 11.0 (95% CI: 2.1-58.5), p = 0.005) were found to be predictive for pathological angiographic findings at follow-up. Furthermore, higher blood values of high-sensitive troponin after successful revascularization were associated with all endpoints. Interestingly, neither the J-CTO score nor the presence of symptoms at the follow-up visit could be correlated to adverse angiographic results. (4) Conclusions: In this medium-sized cohort of patients with surveillance coronary angiography, we were able to identify reduced TIMI flow and female gender as the strongest predictors for future TVF.

4.
Earth Planet Sci Lett ; 5262019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33688096

RESUMEN

The Moon-forming giant impact extensively melts and partially vaporizes the silicate Earth and delivers a substantial mass of metal to Earth's core. The subsequent evolution of the magma ocean and overlying atmosphere has been described by theoretical models but observable constraints on this epoch have proved elusive. Here, we report thermodynamic and climate calculations of the primordial atmosphere during the magma ocean and water ocean epochs respectively and forge new links with observations to gain insight into the behavior of volatiles on the Hadean Earth. As accretion wanes, Earth's magma ocean crystallizes, outgassing the bulk of its volatiles into the primordial atmosphere. The redox state of the magma ocean controls both the chemical composition of the outgassed volatiles and the hydrogen isotopic composition of water oceans that remain after hydrogen escape from the primordial atmosphere. The climate modeling indicates that multi-bar H2-rich atmospheres generate sufficient greenhouse warming and rapid kinetics resulting in ocean-atmosphere H2O-H2 isotopic equilibration. Whereas water condenses and is mostly retained, molecular hydrogen does not condense and can escape, allowing large quantities (~102 bars) of hydrogen - if present - to be lost from the Earth in this epoch. Because the escaping inventory of H can be comparable to the hydrogen inventory in primordial water oceans, equilibrium deuterium enrichment can be large with a magnitude that depends on the initial atmospheric H2 inventory. Under equilibrium partitioning, the water molecule concentrates deuterium and, to the extent that hydrogen in other forms (e.g., H2) are significant species in the outgassed atmosphere, pronounced D/H enrichments (~1.5-2x) in the oceans are expected from equilibrium partitioning in this epoch. By contrast, the common view that terrestrial water has a carbonaceous chondritic source requires the oceans to preserve the isotopic composition of that source, undergoing minimal D-enrichment via equilibration with H2 followed by hydrodynamic escape. Such minimal enrichment places upper limits on the amount of primordial atmospheric H2 in contact with Hadean water oceans and implies oxidizing conditions (logfO2>IW+1, H2/H2O<0.3) for outgassing from the magma ocean. Preservation of an approximate carbonaceous chondrite D/H signature in the oceans thus provides evidence that the observed oxidation of silicate Earth occurred before crystallization of the final magma ocean, yielding a new constraint on the timing of this critical event in Earth history. The seawater-carbonaceous chondrite "match" in D/H (to ~10-20%) further constrains the prior existence of an atmospheric H2 inventory - of any origin - on post-giant-impact Earth to <20 bars, and suggests that the terrestrial mantle supplied the oxidant for the chemical resorption of metals during terrestrial late accretion.

5.
Proc Natl Acad Sci U S A ; 112(29): 8965-70, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26150527

RESUMEN

We use the C/N ratio as a monitor of the delivery of key ingredients of life to nascent terrestrial worlds. Total elemental C and N contents, and their ratio, are examined for the interstellar medium, comets, chondritic meteorites, and terrestrial planets; we include an updated estimate for the bulk silicate Earth (C/N = 49.0 ± 9.3). Using a kinetic model of disk chemistry, and the sublimation/condensation temperatures of primitive molecules, we suggest that organic ices and macromolecular (refractory or carbonaceous dust) organic material are the likely initial C and N carriers. Chemical reactions in the disk can produce nebular C/N ratios of ∼1-12, comparable to those of comets and the low end estimated for planetesimals. An increase of the C/N ratio is traced between volatile-rich pristine bodies and larger volatile-depleted objects subjected to thermal/accretional metamorphism. The C/N ratios of the dominant materials accreted to terrestrial planets should therefore be higher than those seen in carbonaceous chondrites or comets. During planetary formation, we explore scenarios leading to further volatile loss and associated C/N variations owing to core formation and atmospheric escape. Key processes include relative enrichment of nitrogen in the atmosphere and preferential sequestration of carbon by the core. The high C/N bulk silicate Earth ratio therefore is best satisfied by accretion of thermally processed objects followed by large-scale atmospheric loss. These two effects must be more profound if volatile sequestration in the core is effective. The stochastic nature of these processes hints that the surface/atmospheric abundances of biosphere-essential materials will likely be variable.


Asunto(s)
Planeta Tierra , Exobiología , Medio Ambiente Extraterrestre , Estrellas Celestiales , Carbono/análisis , Simulación por Computador , Sedimentos Geológicos/química , Hielo , Cinética , Modelos Químicos , Método de Montecarlo , Nitrógeno/análisis , Silicio/análisis
6.
Proc Natl Acad Sci U S A ; 110(20): 7967-8, 2013 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-23633566
7.
J Magn Reson Imaging ; 38(6): 1454-61, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23554005

RESUMEN

PURPOSE: To investigate the relationship between quantitative magnetic resonance imaging (qMRI) and contrast enhancement in multiple sclerosis (MS) lesions. We compared maps of T1 relaxation time, proton density (PD), and magnetization transfer ratio (MTR) between lesions with and without contrast enhancement as quantified by the amount of T1 shortening postcontrast agent (CA). MATERIALS AND METHODS: In 17 patients with relapsing-remitting MS (RRMS), 15 with progressive MS (PMS), and 17 healthy controls, T1, PD, and MTR were measured at 3T and T1-mapping was repeated after CA administration. Manually drawn MS-lesions (3D-FLAIR) were labeled as enhancing if post-CA T1-shortening exceeded mean T1-shortening in normal-appearing white matter (NAWM) by at least 2 standard deviations. Precontrast T1, PD, and MTR were compared in enhancing lesions, nonenhancing lesions, NAWM, and gray matter. RESULTS: Precontrast T1, PD, and MTR differed significantly between enhancing and nonenhancing lesions in RRMS and PMS patients (all P < 0.01). In PMS patients, PD of NAWM, enhancing, and nonenhancing lesions and MTR and T1 of gray matter differed significantly from RRMS and controls. Only MTR of gray matter differed between RRMS and controls. CONCLUSION: Contrast enhancement in MS quantified by relative T1 shortening may be predicted by precontrast abnormalities of T1, PD, and MTR and likely represents blood-brain barrier damage.


Asunto(s)
Encéfalo/patología , Gadolinio , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Neuronas/patología , Adulto , Anciano , Medios de Contraste , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Adulto Joven
8.
Nature ; 493(7431): 211-5, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23302861

RESUMEN

The onset of melting in the Earth's upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250 km or less beneath mid-oceanic ridges, owing to the small fraction (∼0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ∼200 km (refs 3-5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2-5 GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure-temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite + CO(2) beneath ridges commences at ∼180 km. Accounting for the effect of 50-200 p.p.m. H(2)O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ∼100 p.p.m. CO(2) becomes as deep as ∼220-300 km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ∼250-200 km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO(2)-rich but H(2)O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth's deep upper mantle, and the inventory of carbon, H(2)O and other highly incompatible elements at ridges becomes controlled by the flux of the former.

9.
Science ; 325(5940): 545-6, 2009 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-19644097
10.
J Phys Chem B ; 112(41): 13005-14, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18811182

RESUMEN

Monte Carlo simulations were used to investigate the phase behavior of hydrated liquid silica as a function of temperature and overall water mole fraction, x w. Simulations using the Feuston-Garofalini potential were performed in the isobaric-isothermal ensemble at p = 1 GPa for 15 temperatures (2000 < or = T < or = 9000 K) and 25 compositions (0.0 < or = x w < or = 0.4). The unusual volume minimum exhibited by tetrahedrally coordinated liquid silica is found to persist up to x w approximately 0.267, although the temperature of the volume minimum decreases with increasing water content. Structural properties of the pure and hydrated systems are compared and the addition of water to liquid silica disrupts the silica network more dramatically than temperature alone. The simulations yield very low concentrations of molecular water, e.g. only about 1.2% of the oxygen atoms are bound to exactly two hydrogen atoms at x w = 0.4 and T = 3000 K.

11.
J Phys Chem B ; 112(41): 13015-21, 2008 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-18811184

RESUMEN

The effect of pressure on structure and water speciation in hydrated liquid silica is examined over a range of temperatures and compositions. The Feuston-Garofalini (FG) potential is used in isobaric-isothermal Monte Carlo simulations carried out at four pressures (0.25, 1.0, 2.5, and 10 GPa) for seven temperatures (2000 < or = T < or= 9000 K) and five compositions (0.0 < or = x_w < or = 0.4). The FG potential yields a stable melt phase for p > or = 1.0 GPa and/or x_w < or = 0.1 for all temperatures. The volume minimum seen in previous simulations of pure and hydrated liquid silica using the FG potential persists up to 2.5 GPa but is no longer evident at 10 GPa. This is correlated with gradual structural changes of the liquid up to 2.5 GPa and with more significant changes at 10 GPa. Even at high overall concentrations of water (x_w = 0.4), only about 2% of oxygen atoms are present as molecular water species at the lowest temperature. This percentage decreases with increasing pressure and temperature.

12.
Nature ; 440(7084): 659-62, 2006 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-16572168

RESUMEN

The onset of partial melting beneath mid-ocean ridges governs the cycling of highly incompatible elements from the mantle to the crust, the flux of key volatiles (such as CO2, He and Ar) and the rheological properties of the upper mantle. Geophysical observations indicate that melting beneath ridges begins at depths approaching 300 km, but the cause of this melting has remained unclear. Here we determine the solidus of carbonated peridotite from 3 to 10 GPa and demonstrate that melting beneath ridges may occur at depths up to 330 km, producing 0.03-0.3% carbonatite liquid. We argue that these melts promote recrystallization and realignment of the mineral matrix, which may explain the geophysical observations. Extraction of incipient carbonatite melts from deep within the oceanic mantle produces an abundant source of metasomatic fluids and a vast mantle residue depleted in highly incompatible elements and fractionated in key parent-daughter elements. We infer that carbon, helium, argon and highly incompatible heat-producing elements (such as uranium, thorium and potassium) are efficiently scavenged from depths of approximately 200-330 km in the upper mantle.

13.
Nature ; 439(7075): E3; discussion E3-4, 2006 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-16437063

RESUMEN

The suggestion that the transition zone of Earth's mantle (410-670 km in depth) is enriched in water is of great possible significance to the geodynamics and geochemistry of Earth's interior, as well as for the role of the mantle in the global water cycle. Huang et al. compare the effect of water on electrical conductivities of transition-zone phases to electromagnetic and magnetotelluric soundings of the mantle beneath the North Pacific and conclude that the transition zone contains between 1,000 and 2,000 p.p.m. of water, which is considerably more than the 50-200 p.p.m. present in the upper mantle. This conclusion is predicated on the assumption that the transition zone is relatively oxidized, but in fact fairly reduced conditions are more likely. Here I show that if the transition zone is reduced, high conductivities can be explained without the requirement for large enrichments of water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...