Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cereb Blood Flow Metab ; 43(7): 1142-1152, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36688515

RESUMEN

Noradrenaline (NA) release from locus coeruleus axons generates vascular contractile tone in arteriolar smooth muscle and contractile capillary pericytes. This tone allows neuronal activity to evoke vasodilation that increases local cerebral blood flow (CBF). Much of the vascular resistance within the brain is located in capillaries and locus coeruleus axons have NA release sites closer to pericytes than to arterioles. In acute brain slices, NA contracted pericytes but did not raise the pericyte cytoplasmic Ca2+ concentration, while the α1 agonist phenylephrine did not evoke contraction. Blocking α2 adrenergic receptors (α2Rs, which induce contraction by inhibiting cAMP production), greatly reduced the NA-evoked pericyte contraction, whereas stimulating α2Rs using xylazine (a sedative) or clonidine (an anti-hypertensive drug) evoked pericyte contraction. Noradrenaline-evoked pericyte contraction and capillary constriction are thus mediated via α2Rs. Consequently, α2Rs may not only modulate CBF in health and pathological conditions, but also contribute to CBF changes evoked by α2R ligands administered in research, veterinary and clinical settings.


Asunto(s)
Locus Coeruleus , Pericitos , Pericitos/metabolismo , Locus Coeruleus/metabolismo , Capilares/fisiología , Norepinefrina/farmacología , Norepinefrina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Axones/metabolismo
2.
Brain ; 146(2): 727-738, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35867861

RESUMEN

The SARS-CoV-2 receptor, ACE2, is found on pericytes, contractile cells enwrapping capillaries that regulate brain, heart and kidney blood flow. ACE2 converts vasoconstricting angiotensin II into vasodilating angiotensin-(1-7). In brain slices from hamster, which has an ACE2 sequence similar to human ACE2, angiotensin II evoked a small pericyte-mediated capillary constriction via AT1 receptors, but evoked a large constriction when the SARS-CoV-2 receptor binding domain (RBD, original Wuhan variant) was present. A mutated non-binding RBD did not potentiate constriction. A similar RBD-potentiated capillary constriction occurred in human cortical slices, and was evoked in hamster brain slices by pseudotyped virions expressing SARS-CoV-2 spike protein. This constriction reflects an RBD-induced decrease in the conversion of angiotensin II to angiotensin-(1-7) mediated by removal of ACE2 from the cell surface membrane and was mimicked by blocking ACE2. The clinically used drug losartan inhibited the RBD-potentiated constriction. Thus, AT1 receptor blockers could be protective in COVID-19 by preventing pericyte-mediated blood flow reductions in the brain, and perhaps the heart and kidney.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Pericitos/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Capilares , Constricción , Receptores Virales/química , Receptores Virales/metabolismo , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica
3.
J Cereb Blood Flow Metab ; 42(11): 2032-2047, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35786054

RESUMEN

Oxygen supplementation is regularly prescribed to patients to treat or prevent hypoxia. However, excess oxygenation can lead to reduced cerebral blood flow (CBF) in healthy subjects and worsen the neurological outcome of critically ill patients. Most studies on the vascular effects of hyperoxia focus on arteries but there is no research on the effects on cerebral capillary pericytes, which are major regulators of CBF. Here, we used bright-field imaging of cerebral capillaries and modeling of CBF to show that hyperoxia (95% superfused O2) led to an increase in intracellular calcium level in pericytes and a significant capillary constriction, sufficient to cause an estimated 25% decrease in CBF. Although hyperoxia is reported to cause vascular smooth muscle cell contraction via generation of reactive oxygen species (ROS), endothelin-1 and 20-HETE, we found that increased cytosolic and mitochondrial ROS levels and endothelin release were not involved in the pericyte-mediated capillary constriction. However, a 20-HETE synthesis blocker greatly reduced the hyperoxia-evoked capillary constriction. Our findings establish pericytes as regulators of CBF in hyperoxia and 20-HETE synthesis as an oxygen sensor in CBF regulation. The results also provide a mechanism by which clinically administered oxygen can lead to a worse neurological outcome.


Asunto(s)
Hiperoxia , Pericitos , Calcio/metabolismo , Capilares , Circulación Cerebrovascular/fisiología , Constricción , Constricción Patológica , Endotelina-1/metabolismo , Humanos , Hiperoxia/metabolismo , Oxígeno/metabolismo , Pericitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Neurocrit Care ; 36(3): 1027-1043, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35099713

RESUMEN

Hyperoxemia commonly occurs in clinical practice and is often left untreated. Many studies have shown increased mortality in patients with hyperoxemia, but data on neurological outcome in these patients are conflicting, despite worsened neurological outcome found in preclinical studies. To investigate the association between hyperoxemia and neurological outcome in adult patients, we performed a systematic review and meta-analysis of observational studies. We searched MEDLINE, Embase, Scopus, Web of Science, Cumulative Index to Nursing and Allied Health Literature, and ClinicalTrials.gov from inception to May 2020 for observational studies correlating arterial oxygen partial pressure (PaO2) with neurological status in adults hospitalized with acute conditions. Studies of chronic pulmonary disease or hyperbaric oxygenation were excluded. Relative risks (RRs) were pooled at the study level by using a random-effects model to compare the risk of poor neurological outcome in patients with hyperoxemia and patients without hyperoxemia. Sensitivity and subgroup analyses and assessments of publication bias and risk of bias were performed. Maximum and mean PaO2 in patients with favorable and unfavorable outcomes were compared using standardized mean difference (SMD). Of 6255 records screened, 32 studies were analyzed. Overall, hyperoxemia was significantly associated with an increased risk of poor neurological outcome (RR 1.13, 95% confidence interval [CI] 1.05-1.23, statistical heterogeneity I2 58.8%, 22 studies). The results were robust across sensitivity analyses. Patients with unfavorable outcome also showed a significantly higher maximum PaO2 (SMD 0.17, 95% CI 0.04-0.30, I2 78.4%, 15 studies) and mean PaO2 (SMD 0.25, 95% CI 0.04-0.45, I2 91.0%, 13 studies). These associations were pronounced in patients with subarachnoid hemorrhage (RR 1.34, 95% CI 1.14-1.56) and ischemic stroke (RR 1.41, 95% CI 1.14-1.74), but not in patients with cardiac arrest, traumatic brain injury, or following cardiopulmonary bypass. Hyperoxemia is associated with poor neurological outcome, especially in patients with subarachnoid hemorrhage and ischemic stroke. Although our study cannot establish causality, PaO2 should be monitored closely because hyperoxemia may be associated with worsened patient outcome and consequently affect the patient's quality of life.


Asunto(s)
Accidente Cerebrovascular Isquémico , Hemorragia Subaracnoidea , Adulto , Análisis de los Gases de la Sangre/métodos , Humanos , Calidad de Vida , Hemorragia Subaracnoidea/complicaciones
5.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34642249

RESUMEN

Microglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris, or dying cells, which they remove through phagocytosis. Microglial ramification, motility, and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels also play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that a lack of THIK-1 activity approximately halved both microglial phagocytosis and marker levels for the lysosomes that degrade phagocytically removed material. These changes may reflect a decrease of intracellular [Ca2+]i activity, which was observed when THIK-1 activity was reduced, since buffering [Ca2+]i reduced phagocytosis. Less phagocytosis is expected to result in impaired pruning of synapses. In the hippocampus, mice lacking THIK-1 expression had an increased number of anatomically and electrophysiologically defined glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, caused by impaired removal by THIK-1 KO microglia. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in the THIK-1 expression level in disease states may contribute to altering neural circuit function.


Asunto(s)
Microglía/metabolismo , Canales de Potasio de Dominio Poro en Tándem/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Femenino , Masculino , Ratones , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
6.
Science ; 365(6450)2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31221773

RESUMEN

Cerebral blood flow is reduced early in the onset of Alzheimer's disease (AD). Because most of the vascular resistance within the brain is in capillaries, this could reflect dysfunction of contractile pericytes on capillary walls. We used live and rapidly fixed biopsied human tissue to establish disease relevance, and rodent experiments to define mechanism. We found that in humans with cognitive decline, amyloid ß (Aß) constricts brain capillaries at pericyte locations. This was caused by Aß generating reactive oxygen species, which evoked the release of endothelin-1 (ET) that activated pericyte ETA receptors. Capillary, but not arteriole, constriction also occurred in vivo in a mouse model of AD. Thus, inhibiting the capillary constriction caused by Aß could potentially reduce energy lack and neurodegeneration in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Capilares/fisiopatología , Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular , Constricción Patológica/fisiopatología , Pericitos/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Animales , Biopsia , Corteza Cerebral/patología , Endotelina-1/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ratones , Multimerización de Proteína , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptor de Endotelina A/metabolismo , Transducción de Señal , Resistencia Vascular
7.
J Neurochem ; 150(6): 648-665, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31106417

RESUMEN

It is becoming increasingly apparent that disorders of the brain microvasculature contribute to many neurological disorders. In recent years it has become clear that a major player in these events is the capillary pericyte which, in the brain, is now known to control the blood-brain barrier, regulate blood flow, influence immune cell entry and be crucial for angiogenesis. In this review we consider the under-explored possibility that peripheral diseases which affect the microvasculature, such as hypertension, kidney disease and diabetes, produce central nervous system (CNS) dysfunction by mechanisms affecting capillary pericytes within the CNS. We highlight how cellular messengers produced peripherally can act via signalling pathways within CNS pericytes to reshape blood vessels, restrict blood flow or compromise blood-brain barrier function, thus causing neuronal dysfunction. Increased understanding of how renin-angiotensin, Rho-kinase and PDGFRß signalling affect CNS pericytes may suggest novel therapeutic approaches to reducing the CNS effects of peripheral disorders.


Asunto(s)
Encefalopatías/fisiopatología , Encéfalo/fisiopatología , Pericitos/metabolismo , Pericitos/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/metabolismo , Encefalopatías/patología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA