Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37755594

RESUMEN

Climate change mitigation is a pressing global challenge that requires reducing CO2 emissions without hindering economic growth. Using an extended Kaya identity, Logarithmic Mean Divisia Index (LMDI), and Tapio decoupling indicator, this paper investigates the spatio-temporal variations, drivers, and decoupling of CO2 emissions from economic growth in 150 countries from 1990 to 2019, considering regional disparities and income-based inequalities. The findings reveal increasing CO2 emissions between 1990 and 2019, with notable fluctuations in certain 5-year intervals. CO2 emission growth varied significantly by region, with countries like China, the USA, India, and Japan experiencing rapid increases. Economic growth emerged as the primary driver of CO2 emission growth, and its impact strengthened over time. Population growth also contributed significantly to CO2 emissions, particularly in middle- and low-income countries. The study identifies energy and carbon intensity as crucial mitigating factors that weaken CO2 emissions, offering hope for effective climate change mitigation. Furthermore, the degree of decoupling between economic growth and CO2 emissions varied among countries in the same region, with high-income countries demonstrating stronger decoupling compared to upper-middle-income countries, which accounted for 71% of global CO2 emission increase. These findings underline the imperative of accounting for income levels and regional differences in formulating CO2 emission mitigation strategies. Also, the study emphasizes the pressing necessity for cohesive global coordination to facilitate the transition toward a low-carbon economy. Such collaborative endeavors are paramount in our collective pursuit to combat climate change effectively, safeguarding the well-being and sustenance of our planet for future generations. As policymakers, it is imperative to integrate these insights into decision-making processes to chart a sustainable and resilient course forward.

2.
Sci Total Environ ; 833: 154999, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35381257

RESUMEN

Although many African countries have made significant progress towards universal access to water, energy, and food resources (WEF), assessing the ecological response to the increasing productivity of these resources is not well researched, which carries the risk of ecological deficit, resource degradation, and inefficient policy responses to resource management. This study seeks to assess the ecological sustainability response to the high increase demand for WEF resources in well-developed African countries. The study developed new measurement metrics for the WEF production system, including three indicators of ecological footprint (EF), ecological biocapacity (EBC), and eco-balance. The overall analysis considers data from four distinct types of water and energy use activities, and eight distinct types of food consumption, in nine African countries with the highest WEF nexus performance. An evaluation tool for the Water, Energy, Food and Ecological Balance (WEFEB) nexus index is proposed as one of the study's outcomes. Despite having 100% access to WEF resources related to the SDG targets. The results reveal the significant levels of imbalance and large ecological deficits existing in many of the concerned countries, especially North Africa, Mauritius, and South Africa, which need to rethink their economic models. Projecting a sustained increase in resource demand so that each country achieves at least 1700 m3/capita/year as the minimum amount of water needed, most countries would suffer from a steady increase in ecological imbalance. According to the results, managing the ecological imbalances with increasing demand for WEF resources in well-developed African countries may require well-designed policies to effectively reduce certain types of human demand that have a large ecological footprint.


Asunto(s)
Abastecimiento de Alimentos , Abastecimiento de Agua , Países Desarrollados , Seguridad Alimentaria , Humanos , Sudáfrica , Agua
3.
Sci Total Environ ; 835: 155343, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489483

RESUMEN

Africa is facing an increasing challenge with respect to water scarcity (WS), which is driven by climate change, population growth, and socioeconomic growth combined with inadequate water resources management. In particular, there is significant concern of virtual water (VW) trade, which plays the key role in water resource management and food security sustainability. Using bilateral trade data, this study consistently evaluated the change and balanced trade of major grains, the VW flows, WS status, water dependency (WD), water self-sufficiency (WSS), and water savings/losses within5 African sub-regions and their partners from 2000 to 2020. The ratio of water use to water availability was used to estimate the WS. The WD was quantified by the ratio of the net VW import to the regional water appropriation and the regional water savings/losses were also quantified by multiplying the inter-regional trade by the virtual water content of the imported/exported grains. The overall average trade deficit of African regions was found to increase to -1364.22 × 106 tons and Africa imported 41,359.07 Bm3 of VW from grain products. Green water contributed 79.33% of the total VWI. The WS values for East African countries were >100, indicating overexploitation. Besides, the overall WD in Africa was 465.5% for the studied period. The trade of main grains between Africa and the rest of the planet corresponded to a global water loss of 2820.7 Bm3·yr-1. However, the inter-continental cereal VW trade pattern and high trend will continue in the future. In view of the rising tension of WS, some African countries need to revise international crop trade and water resources conservation policies to promote a more balanced ecosystem. This study exemplifies that decision makers would consider VW flows and water savings/losses for enhancing water use efficiency and fair trading, thus increasing food production in Africa.


Asunto(s)
Inseguridad Hídrica , Agua , Agricultura/métodos , Ecosistema , Grano Comestible , Políticas , Abastecimiento de Agua
4.
Environ Pollut ; 284: 117405, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062430

RESUMEN

River ecosystems are under increasing stress in the background of global change and ever-growing anthropogenic impacts in Central Asia. However, available water quality data in this region are insufficient for a reliable assessment of the current status, which come as no surprise that the limited knowledge of regulating processes for further prediction of solute variations hinders the development of sustainable management strategies. Here, we analyzed a dataset of various water quality variables from two sampling campaigns in 2019 in the catchments of two major rivers in Central Asia-the Amu Darya and Syr Darya Rivers. Our results suggested high spatial heterogeneity of salinity and major ion components along the longitudinal directions in both river catchments, pointing to an increasing influence of human activities toward downstream areas. We linked the modeling outputs from the global nutrient model (IMAGE-GNM) to riverine nutrients to elucidate the effect of different natural and anthropogenic sources in dictating the longitudinal variations of the riverine nutrient concentrations (N and P). Diffuse nutrient loadings dominated the export flux into the rivers, whereas leaching and surface runoff constituted the major fractions for N and P, respectively. Discharge of agricultural irrigation water into the rivers was the major cause of the increases in nutrients and salinity. Given that the conditions in Central Asia are highly susceptible to climate change, our findings call for more efforts to establish holistic management of water quality.


Asunto(s)
Ecosistema , Calidad del Agua , Asia , Monitoreo del Ambiente , Humanos , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA