Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 104(5): e4017, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882893

RESUMEN

Scleractinian corals are colonial animals with a range of life-history strategies, making up diverse species assemblages that define coral reefs. We tagged and tracked ~30 colonies from each of 11 species during seven trips spanning 6 years (2009-2015) to measure their vital rates and competitive interactions on the reef crest at Trimodal Reef, Lizard Island, Australia. Pairs of species were chosen from five growth forms in which one species of the pair was locally rare (R) and the other common (C). The sampled growth forms were massive (Goniastrea pectinata [R] and G. retiformis [C]), digitate (Acropora humilis [R] and A. cf. digitifera [C]), corymbose (A. millepora [R] and A. nasuta [C]), tabular (A. cytherea [R] and A. hyacinthus [C]) and arborescent (A. robusta [R] and A. intermedia [C]). An extra corymbose species with intermediate abundance, A. spathulata was included when it became apparent that A. millepora was too rare on the reef crest, making the 11 species in total. The tagged colonies were visited each year in the weeks prior to spawning. During visits, two or more observers each took two or three photographs of each tagged colony from directly above and on the horizontal plane with a scale plate to track planar area. Dead or missing colonies were recorded and new colonies tagged to maintain ~30 colonies per species throughout the 6 years of the study. In addition to tracking tagged corals, 30 fragments were collected from neighboring untagged colonies of each species for counting numbers of eggs per polyp (fecundity); and fragments of untagged colonies were brought into the laboratory where spawned eggs were collected for biomass and energy measurements. We also conducted surveys at the study site to generate size structure data for each species in several of the years. Each tagged colony photograph was digitized by at least two people. Therefore, we could examine sources of error in planar area for both photographers and outliners. Competitive interactions were recorded for a subset of species by measuring the margins of tagged colony outlines interacting with neighboring corals. The study was abruptly ended by Tropical Cyclone Nathan (Category 4) that killed all but nine of the more than 300 tagged colonies in early 2015. Nonetheless, these data will be of use to other researchers interested in coral demography and coexistence, functional ecology, and parametrizing population, community, and ecosystem models. The data set is not copyright restricted, and users should cite this paper when using the data.


Asunto(s)
Antozoos , Animales , Ecosistema , Arrecifes de Coral , Fertilidad , Demografía
2.
Life Sci Alliance ; 5(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34819356

RESUMEN

In melanoma, a switch from a proliferative melanocytic to an invasive mesenchymal phenotype is based on dramatic transcriptional reprogramming which involves complex interactions between a variety of signaling pathways and their downstream transcriptional regulators. TGFß/SMAD, Hippo/YAP/TAZ, and Wnt/ß-catenin signaling pathways are major inducers of transcriptional reprogramming and converge at several levels. Here, we report that TGFß/SMAD, YAP/TAZ, and ß-catenin are all required for a proliferative-to-invasive phenotype switch. Loss and gain of function experimentation, global gene expression analysis, and computational nested effects models revealed the hierarchy between these signaling pathways and identified shared target genes. SMAD-mediated transcription at the top of the hierarchy leads to the activation of YAP/TAZ and of ß-catenin, with YAP/TAZ governing an essential subprogram of TGFß-induced phenotype switching. Wnt/ß-catenin signaling is situated further downstream and exerts a dual role: it promotes the proliferative, differentiated melanoma cell phenotype and it is essential but not sufficient for SMAD or YAP/TAZ-induced phenotype switching. The results identify epistatic interactions among the signaling pathways underlying melanoma phenotype switching and highlight the priorities in targets for melanoma therapy.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Melanoma/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Biomarcadores , Biomarcadores de Tumor , Proliferación Celular , Biología Computacional , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Vía de Señalización Hippo , Humanos , Melanoma/etiología , Melanoma/patología , Modelos Biológicos , Clasificación del Tumor , Invasividad Neoplásica , Estadificación de Neoplasias , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/genética , Vía de Señalización Wnt
3.
J Cell Sci ; 134(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34633031

RESUMEN

The vast majority of breast cancer-associated deaths are due to metastatic spread of cancer cells, a process aided by epithelial-to-mesenchymal transition (EMT). Mounting evidence has indicated that long non-coding RNAs (lncRNAs) also contribute to tumor progression. We report the identification of 114 novel lncRNAs that change their expression during TGFß-induced EMT in murine breast cancer cells (referred to as EMT-associated transcripts; ETs). Of these, the ET-20 gene localizes in antisense orientation within the tenascin C (Tnc) gene locus. TNC is an extracellular matrix protein that is critical for EMT and metastasis formation. Both ET-20 and Tnc are regulated by the EMT master transcription factor Sox4. Notably, ablation of ET-20 lncRNA effectively blocks Tnc expression and with it EMT. Mechanistically, ET-20 interacts with desmosomal proteins, thereby impairing epithelial desmosomes and promoting EMT. A short transcript variant of ET-20 is shown to be upregulated in invasive human breast cancer cell lines, where it also promotes EMT. Targeting ET-20 appears to be a therapeutically attractive lead to restrain EMT and breast cancer metastasis in addition to its potential utility as a biomarker for invasive breast cancer.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Desmosomas/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Invasividad Neoplásica/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXC
4.
Proc Natl Acad Sci U S A ; 111(23): 8524-9, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912168

RESUMEN

Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models--which assume ecological equivalence of species--to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.


Asunto(s)
Algoritmos , Biodiversidad , Biología Marina/métodos , Modelos Biológicos , Clima Frío , Geografía , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie , Clima Tropical
5.
Nat Protoc ; 8(12): 2449-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24232248

RESUMEN

At the end of mammalian spermatogenesis, chromatin in differentiating germ cells is extensively remodeled, with the majority of nucleosomes being removed and ultimately exchanged by highly basic proteins named protamines. Residual nucleosomes are, to various degrees, retained at regulatory sequences in human and mouse sperm. Moreover, certain histone variants and modifications remain present in regulatory sequences of subsets of genes in spermatozoa, providing opportunities for paternal inheritance of chromatin states and epigenetic control of gene expression in the subsequent generation. Here we describe in detail a method that enables the generation of soluble chromatin samples from mouse and human spermatozoa within 1 d. These samples are amendable to chromatin immunoprecipitation and high-throughput sequencing of nucleosome-associated genomic DNA, which require several additional days. We also provide computational scripts that allow straightforward analysis of large genome-wide data sets by biologists with limited computational experience. This protocol will facilitate studies of mechanisms of chromatin remodeling and epigenetic reprogramming during spermatogenesis and of paternal epigenetic inheritance. Similarly, it will help in the study of the causes of human male infertility.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/química , Espermatozoides/ultraestructura , Animales , Ensamble y Desensamble de Cromatina , ADN/química , Epigénesis Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleosomas/metabolismo , Reproducibilidad de los Resultados
6.
Nat Struct Mol Biol ; 20(7): 868-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23770822

RESUMEN

In mammalian spermatozoa, most but not all of the genome is densely packaged by protamines. Here we reveal the molecular logic underlying the retention of nucleosomes in mouse spermatozoa, which contain only 1% residual histones. We observe high enrichment throughout the genome of nucleosomes at CpG-rich sequences that lack DNA methylation. Residual nucleosomes are largely composed of the histone H3.3 variant and are trimethylated at Lys4 of histone H3 (H3K4me3). Canonical H3.1 and H3.2 histones are also enriched at CpG-rich promoters marked by Polycomb-mediated H3K27me3, a modification predictive of gene repression in preimplantation embryos. Histone variant-specific nucleosome retention in sperm is strongly associated with nucleosome turnover in round spermatids. Our data show evolutionary conservation of the basic principles of nucleosome retention in mouse and human sperm, supporting a model of epigenetic inheritance by nucleosomes between generations.


Asunto(s)
Islas de CpG , Nucleosomas/fisiología , Espermatozoides/metabolismo , Animales , Metilación de ADN , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Espermátides/metabolismo
7.
BMC Evol Biol ; 12: 185, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22978442

RESUMEN

BACKGROUND: The observation that females mate multiply when males provide nothing but sperm - which sexual selection theory suggests is unlikely to be limiting - continues to puzzle evolutionary biologists. Here we test the hypothesis that multiple mating is prevalent under such circumstances because it enhances female fitness. We do this by allowing female Trinidadian guppies to mate with either a single male or with multiple males, and then tracking the consequences of these matings across two generations. RESULTS: Overall, multiply mated females produced 67% more F2 grand-offspring than singly mated females. These offspring, however, did not grow or mature faster, nor were they larger at birth, than F2 grand-offspring of singly mated females. Our results, however, show that multiple mating yields benefits to females in the form of an increase in the production of F1. The higher fecundity among multiply mated mothers was driven by greater production of sons but not daughters. However, contrary to expectation, individually, the offspring of multiply mated females do not grow at different rates than offspring of singly mated females, nor do any indirect fitness benefits or costs accrue to second-generation offspring. CONCLUSIONS: The study provides strong evidence that multiple mating is advantageous to females, even when males contribute only sperm. This benefit is achieved through an increase in fecundity in the first generation, rather than through other fitness correlates such as size at birth, growth rate, time to sexual maturation and survival. Considered alongside previous work that female guppies can choose to mate with multiple partners, our results provide compelling evidence that direct fitness benefits underpin these mating decisions.


Asunto(s)
Poecilia/fisiología , Conducta Sexual Animal , Animales , Femenino , Fertilidad , Masculino , Modelos Biológicos
8.
PLoS One ; 6(9): e25028, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21966402

RESUMEN

Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.


Asunto(s)
Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Tiburones/fisiología , Algoritmos , Animales , Australia , Conservación de los Recursos Naturales , Arrecifes de Coral , Ecosistema , Modelos Estadísticos , Océanos y Mares , Dinámica Poblacional
9.
Nat Struct Mol Biol ; 17(6): 679-87, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473313

RESUMEN

In higher eukaryotes, histone methylation is involved in maintaining cellular identity during somatic development. As most nucleosomes are replaced by protamines during spermatogenesis, it is unclear whether histone modifications function in paternal transmission of epigenetic information. Here we show that two modifications important for Trithorax- and Polycomb-mediated gene regulation have methylation-specific distributions at regulatory regions in human spermatozoa. Histone H3 Lys4 dimethylation (H3K4me2) marks genes that are relevant in spermatogenesis and cellular homeostasis. In contrast, histone H3 Lys27 trimethylation (H3K27me3) marks developmental regulators in sperm, as in somatic cells. However, nucleosomes are only moderately retained at regulatory regions in human sperm. Nonetheless, genes with extensive H3K27me3 coverage around transcriptional start sites in particular tend not to be expressed during male and female gametogenesis or in preimplantation embryos. Promoters of orthologous genes are similarly modified in mouse spermatozoa. These data are compatible with a role for Polycomb in repressing somatic determinants across generations, potentially in a variegating manner.


Asunto(s)
Histonas/química , Histonas/metabolismo , Regiones Promotoras Genéticas , Espermatozoides/metabolismo , Animales , Sitios de Unión/genética , Metilación de ADN , Evolución Molecular , Femenino , N-Metiltransferasa de Histona-Lisina , Histonas/genética , Humanos , Masculino , Metilación , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb , Unión Proteica , Proteínas Represoras/metabolismo , Transducción de Señal , Especificidad de la Especie , Espermatogénesis/genética , Espermatogénesis/fisiología , Transcripción Genética
10.
Hum Mol Genet ; 16(19): 2272-80, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17616512

RESUMEN

DNA methylation is an important epigenetic modification regulating various biological phenomena, including genomic imprinting and transposon silencing. It is known that methylation of the differentially methylated regions (DMRs) associated with paternally imprinted genes and of some repetitive elements occurs during male germ cell development in the mouse. We have performed a detailed methylation analysis of the paternally methylated DMRs (H19, Dlk1/Gtl2 and Rasgrf1), interspersed repeats [SineB1, intracisternal A particle (IAP) and Line1] and satellite repeats (major and minor) to determine the timing of this de novo methylation in male germ cells. Furthermore, we have examined the roles of the de novo methyltransferases (Dnmt3a and Dnmt3b) and related protein (Dnmt3L) in this process. We found that methylation of all DMRs and repeats occurred progressively in fetal prospermatogonia and was completed by the newborn stage. Analysis of newborn prospermatogonia from germline-specific Dnmt3a and Dnmt3b knockout mice revealed that Dnmt3a mainly methylates the H19 and Dlk1/Gtl2 DMRs and a short interspersed repeat SineB1. Both Dnmt3a and Dnmt3b were involved in the methylation of Rasgrf1 DMR and long interspersed repeats IAP and Line1. Only Dnmt3b was required for the methylation of the satellite repeats. These results indicate both common and differential target specificities of Dnmt3a and Dnmt3b in vivo. Finally, all these sequences showed moderate to severe hypomethylation in Dnmt3L-deficient prospermatogonia, indicating the critical function and broad specificity of this factor in de novo methylation.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Células Germinativas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Animales , Animales Recién Nacidos , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , ADN Satélite/genética , ADN Satélite/metabolismo , Femenino , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Secuencias Repetitivas Esparcidas/genética , Masculino , Ratones , Espermatogénesis/genética , ADN Metiltransferasa 3B
11.
Curr Biol ; 16(23): 2314-9, 2006 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-17141612

RESUMEN

Marine ecosystems are suffering severe depletion of apex predators worldwide; shark declines are principally due to conservative life-histories and fisheries overexploitation. On coral reefs, sharks are strongly interacting apex predators and play a key role in maintaining healthy reef ecosystems. Despite increasing fishing pressure, reef shark catches are rarely subject to specific limits, with management approaches typically depending upon no-take marine reserves to maintain populations. Here, we reveal that this approach is failing by documenting an ongoing collapse in two of the most abundant reef shark species on the Great Barrier Reef (Australia). We find an order of magnitude fewer sharks on fished reefs compared to no-entry management zones that encompass only 1% of reefs. No-take zones, which are more difficult to enforce than no-entry zones, offer almost no protection for shark populations. Population viability models of whitetip and gray reef sharks project ongoing steep declines in abundance of 7% and 17% per annum, respectively. These findings indicate that current management of no-take areas is inadequate for protecting reef sharks, even in one of the world's most-well-managed reef ecosystems. Further steps are urgently required for protecting this critical functional group from ecological extinction.


Asunto(s)
Antozoos/fisiología , Conservación de los Recursos Naturales , Ecosistema , Tiburones/fisiología , Animales , Dinámica Poblacional , Conducta Predatoria
12.
Nucleic Acids Res ; 31(16): 4797-804, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907721

RESUMEN

Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5'-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5' upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , Regulación de la Expresión Génica , Sistemas de Lectura Abierta/genética , Proteínas/genética , Actinas , Animales , Proteínas del Citoesqueleto , ADN/genética , ADN/metabolismo , Proteínas Fluorescentes Verdes , Intrones/genética , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Células 3T3 NIH , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espermátides/citología , Espermátides/metabolismo , Testículo/citología , Testículo/metabolismo
13.
Mol Reprod Dev ; 65(2): 148-56, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12704725

RESUMEN

The Tact1 and Tact2 genes, each of which encodes an actin-like protein, are exclusively expressed and translated in haploid germ cells in testis. To characterize the haploid germ cell-specific gene structure, a mouse genomic library was screened with a Tact1 cDNA as a probe, and four independent phage clones containing the Tact1 gene were isolated. Southern hybridization and sequencing analyses revealed that Tact1 and Tact2 were single copy genes contained on a common fragment in a head-to-head orientation, and that the distance between these genes was less than 2 kb. Comparison of the nucleotide sequences of genomic DNA and cDNA demonstrated that Tact1 and Tact2 lack introns, although all known actin or actin-related genes in mammals contain introns. Human Tact orthologues also lack introns and are located within 6.4 kb in a head-to-head orientation. These findings indicate that Tact1 and Tact2 or one of these genes arose by retroposition of a spliced mRNA transcribed from an actin progenitor gene prior to the divergence of rodents and primates. The Tact1 and Tact2 genes are unusual retroposons in that they have retained an open reading frame and are expressed in testicular germ cells, because almost all retroposons become pseudogenes. It was revealed that a 2kb sequence between the two genes bidirectionally controls haploid germ-cell specific expression by analyzing transgenic mice. Comparison of the murine Tact genes with their human orthologues showed a high level of identity between the two species in the 5'-upstream and non-coding sequences as well as in the coding region, indicating that conserved elements in these regions may be involved in the regulation of haploid germ cell-specific expression. The promoter region contains no TATA-, CCAAT- or GC-boxes, although there are potential cAMP response element (CRE)-like motifs in the 5'-upstream region and the 5'-untranslated region in Tact1 and Tact2, respectively. Transient promoter analyses indicate that CREMtau may activate Tact1 and Tact2 expression in germ cells.


Asunto(s)
Regiones Promotoras Genéticas , Proteínas/genética , Proteínas Represoras , Espermátides/metabolismo , Actinas , Animales , Secuencia de Bases , Modulador del Elemento de Respuesta al AMP Cíclico , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/genética , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Espermatogénesis/genética , Espermatogénesis/fisiología , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...