Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39260362

RESUMEN

Oxford ragwort (Senecio squalidus) is one of only two homoploid hybrid species known to have originated very recently, so it is a unique model for determining genomic changes and stabilization following homoploid hybrid speciation. Here, we provide a chromosome-level genome assembly of S. squalidus with 95% of the assembly contained in the 10 longest scaffolds, corresponding to its haploid chromosome number. We annotated 30,249 protein-coding genes and estimated that ∼62% of the genome consists of repetitive elements. We then characterized genome-wide patterns of linkage disequilibrium, polymorphism, and divergence in S. squalidus and its two parental species, finding that (1) linkage disequilibrium is highly heterogeneous, with a region on chromosome 4 showing increased values across all three species but especially in S. squalidus; (2) regions harboring genetic incompatibilities between the two parental species tend to be large, show reduced recombination, and have lower polymorphism in S. squalidus; (3) the two parental species have an unequal contribution (70:30) to the genome of S. squalidus, with long blocks of parent-specific ancestry supporting a very rapid stabilization of the hybrid lineage after hybrid formation; and (4) genomic regions with major parent ancestry exhibit an overrepresentation of loci with evidence for divergent selection occurring between the two parental species on Mount Etna. Our results show that both genetic incompatibilities and natural selection play a role in determining genome-wide reorganization following hybrid speciation and that patterns associated with homoploid hybrid speciation-typically seen in much older systems-can evolve very quickly following hybridization.

2.
Evol Lett ; 8(3): 374-386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39077425

RESUMEN

Adaptive plasticity allows populations to cope with environmental variation but is expected to fail as conditions become unfamiliar. In novel conditions, populations may instead rely on rapid adaptation to increase fitness and avoid extinction. Adaptation should be fastest when both plasticity and selection occur in directions of the multivariate phenotype that contain abundant genetic variation. However, tests of this prediction from field experiments are rare. Here, we quantify how additive genetic variance in a multivariate phenotype changes across an elevational gradient, and test whether plasticity and selection align with genetic variation. We do so using two closely related, but ecologically distinct, sister species of Sicilian daisy (Senecio, Asteraceae) adapted to high and low elevations on Mt. Etna. Using a quantitative genetic breeding design, we generated and then reciprocally planted c. 19,000 seeds of both species, across an elevational gradient spanning each species' native elevation, and then quantified mortality and five leaf traits of emergent seedlings. We found that genetic variance in leaf traits changed more across elevations than between species. The high-elevation species at novel lower elevations showed changes in the distribution of genetic variance among the leaf traits, which reduced the amount of genetic variance in the directions of selection and the native phenotype. By contrast, the low-elevation species mainly showed changes in the amount of genetic variance at the novel high elevation, and genetic variance was concentrated in the direction of the native phenotype. For both species, leaf trait plasticity across elevations was in a direction of the multivariate phenotype that contained a moderate amount of genetic variance. Together, these data suggest that where plasticity is adaptive, selection on genetic variance for an initially plastic response could promote adaptation. However, large environmental effects on genetic variance are likely to reduce adaptive potential in novel environments.

3.
New Phytol ; 239(1): 374-387, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36651081

RESUMEN

Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.


Asunto(s)
Ambiente , Variación Genética , Adaptación Fisiológica/genética , Fenotipo , Aclimatación , Evolución Biológica
4.
Heredity (Edinb) ; 130(1): 40-52, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36494489

RESUMEN

How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.


Asunto(s)
Flujo Génico , Senecio , Humanos , Sicilia , Senecio/genética , Hibridación Genética , Fenotipo , Especiación Genética
5.
Front Plant Sci ; 13: 907363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812981

RESUMEN

Hybridisation is well documented in many species, especially plants. Although hybrid populations might be short-lived and do not evolve into new lineages, hybridisaiton could lead to evolutionary novelty, promoting adaptation and speciation. The genus Senecio (Asteraceae) has been actively used to unravel the role of hybridisation in adaptation and speciation. In this article, we first briefly describe the process of hybridisation and the state of hybridisation research over the years. We then discuss various roles of hybridisation in plant adaptation and speciation illustrated with examples from different Senecio species, but also mention other groups of organisms whenever necessary. In particular, we focus on the genomic and transcriptomic consequences of hybridisation, as well as the ecological and physiological aspects from the hybrids' point of view. Overall, this article aims to showcase the roles of hybridisation in speciation and adaptation, and the research potential of Senecio, which is part of the ecologically and economically important family, Asteraceae.

6.
Evolution ; 76(6): 1229-1245, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35344205

RESUMEN

The evolution of plastic responses to external cues allows species to maintain fitness in response to the environmental variations they regularly experience. However, it remains unclear how plasticity evolves during adaptation. To test whether distinct patterns of plasticity are associated with adaptive divergence, we quantified plasticity for two closely related but ecologically divergent Sicilian daisy species (Senecio, Asteraceae). We sampled 40 representative genotypes of each species from their native range on Mt. Etna and then reciprocally transplanted multiple clones of each genotype into four field sites along an elevational gradient that included the native elevational range of each species, and two intermediate elevations. At each elevation, we quantified survival and measured leaf traits that included investment (specific leaf area), morphology, chlorophyll fluorescence, pigment content, and gene expression. Traits and differentially expressed genes that changed with elevation in one species often showed little changes in the other species, or changed in the opposite direction. As evidence of adaptive divergence, both species performed better at their native site and better than the species from the other habitat. Adaptive divergence is, therefore, associated with the evolution of distinct plastic responses to environmental variation, despite these two species sharing a recent common ancestor.


Asunto(s)
Senecio , Adaptación Fisiológica/genética , Ecosistema , Genotipo , Fenotipo , Senecio/genética
7.
New Phytol ; 232(3): 1159-1167, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34251722

RESUMEN

Endoparasitic plants are the most reduced flowering plants, spending most of their lives as a network of filaments within the tissues of their hosts. Despite their extraordinary life form, we know little about their biology. Research into a few species has revealed unexpected insights, such as the total loss of plastome, the reduction of the vegetative phase to a proembryonic stage, and elevated information exchange between host and parasite. To consolidate our understanding, we review life history, anatomy, and molecular genetics across the four independent lineages of endoparasitic plants. We highlight convergence across these clades and a striking trans-kingdom convergence in life history among endoparasitic plants and disparate lineages of fungi at the molecular and physiological levels. We hypothesize that parasitism of woody plants preselected for the endoparasitic life history, providing parasites a stable host environment and the necessary hydraulics to enable floral gigantism and/or high reproductive output. Finally, we propose a broader view of endoparasitic plants that connects research across disciplines, for example, pollen-pistil and graft incompatibility interactions and plant associations with various fungi. We shine a light on endoparasitic plants and their hosts as under-explored ecological microcosms ripe for identifying unexpected biological processes, interactions and evolutionary convergence.


Asunto(s)
Evolución Biológica , Magnoliopsida , Hongos/genética , Interacciones Huésped-Parásitos , Filogenia , Plantas
8.
Mol Phylogenet Evol ; 157: 107067, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33412273

RESUMEN

Well-supported phylogenies are a prerequisite for the study of the evolution and diversity of life on earth. The subfamily Calamoideae accounts for more than one fifth of the palm family (Arecaceae), occurs in tropical rainforests across the world, and supports a billion-dollar industry in rattan products. It contains ca. 550 species in 17 genera, 10 subtribes and three tribes, but their phylogenetic relationships remain insufficiently understood. Here, we sequenced almost one thousand nuclear genomic regions for 75 systematically selected Calamoideae, representing the taxonomic diversity within all calamoid genera. Our phylogenomic analyses resolved a maximally supported phylogenetic backbone for the Calamoideae, including several higher-level relationships not previously inferred. In-depth analysis revealed low gene tree conflict for the backbone but complex deep evolutionary histories within several subtribes. Overall, our phylogenomic framework sheds new light on the evolution of palms and provides a robust foundation for future comparative studies, such as taxonomy, systematics, biogeography, and macroevolutionary research.


Asunto(s)
Arecaceae/clasificación , Arecaceae/genética , Filogenia , Secuencia de Bases , Biodiversidad , Núcleo Celular/genética , Exones/genética , Marcadores Genéticos , Genómica
9.
Mol Ecol ; 29(21): 4221-4233, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32911573

RESUMEN

Hybridisation can lead to homoploid hybrid speciation, i.e., the origin of new species without change in chromosome number between parents and offspring. Central to homoploid hybrid speciation is the role of hybridisation in the establishment of reproductive isolation between the hybrid and the parental species in the early stages of speciation, when typically all species occur at least partly in sympatry. In this work we analyse genome-wide polymorphism data obtained by transcriptome sequencing of the British hybrid species Oxford ragwort (Senecio squalidus, Asteraceae), its two Italian parental species (S. aethnensis and S. chrysanthemifolius) and their naturally occurring hybrids on Mt Etna (Italy). We show that Oxford ragwort most likely originated from de novo hybridisation between its two Italian parental species whilst they were in cultivation in British gardens at the turn of the 18th century. Reproductive isolation between the new hybrid species and its parental species probably resulted from inheritance of genetic incompatibilities between the two parental species and subsequent ecological segregation - both of which have been shown in previous studies. Our results imply that S. squalidus meets the most stringent criteria set forth to identify homoploid hybrid speciation, and call attention to the creative role of hybridisation in responding to novel environmental conditions.


Asunto(s)
Senecio , Jardines , Especiación Genética , Hibridación Genética , Italia
10.
New Phytol ; 226(2): 326-344, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951018

RESUMEN

Two major developments have made it possible to use examples of ecological radiations as model systems to understand evolution and ecology. First, the integration of quantitative genetics with ecological experiments allows detailed connections to be made between genotype, phenotype, and fitness in the field. Second, dramatic advances in molecular genetics have created new possibilities for integrating field and laboratory experiments with detailed genetic sequencing. Combining these approaches allows evolutionary biologists to better study the interplay between genotype, phenotype, and fitness to explore a wide range of evolutionary processes. Here, we present the genus Senecio (Asteraceae) as an excellent system to integrate these developments, and to address fundamental questions in ecology and evolution. Senecio is one of the largest and most phenotypically diverse genera of flowering plants, containing species ranging from woody perennials to herbaceous annuals. These Senecio species exhibit many growth habits, life histories, and morphologies, and they occupy a multitude of environments. Common within the genus are species that have hybridized naturally, undergone polyploidization, and colonized diverse environments, often through rapid phenotypic divergence and adaptive radiation. These diverse experimental attributes make Senecio an attractive model system in which to address a broad range of questions in evolution and ecology.


Asunto(s)
Senecio , Ambiente , Genotipo , Modelos Biológicos , Fenotipo , Senecio/genética
11.
Mol Ecol ; 29(2): 394-412, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31793091

RESUMEN

Recently diverged species present particularly informative systems for studying speciation and maintenance of genetic divergence in the face of gene flow. We investigated speciation in two closely related Senecio species, S. aethnensis and S. chrysanthemifolius, which grow at high and low elevations, respectively, on Mount Etna, Sicily and form a hybrid zone at intermediate elevations. We used a newly generated genome-wide single nucleotide polymorphism (SNP) dataset from 192 individuals collected over 18 localities along an elevational gradient to reconstruct the likely history of speciation, identify highly differentiated SNPs, and estimate the strength of divergent selection. We found that speciation in this system involved heterogeneous and bidirectional gene flow along the genome, and species experienced marked population size changes in the past. Furthermore, we identified highly-differentiated SNPs between the species, some of which are located in genes potentially involved in ecological differences between species (such as photosynthesis and UV response). We analysed the shape of these SNPs' allele frequency clines along the elevational gradient. These clines show significantly variable coincidence and concordance, indicative of the presence of multifarious selective forces. Selection against hybrids is estimated to be very strong (0.16-0.78) and one of the highest reported in literature. The combination of strong cumulative selection across the genome and previously identified intrinsic incompatibilities probably work together to maintain the genetic and phenotypic differentiation between these species - pointing to the importance of considering both intrinsic and extrinsic factors when studying divergence and speciation.


Asunto(s)
Flujo Génico/genética , Senecio/genética , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Frecuencia de los Genes/genética , Polimorfismo de Nucleótido Simple/genética
12.
AoB Plants ; 11(1): ply078, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30740200

RESUMEN

A new homoploid hybrid lineage needs to establish a degree of reproductive isolation from its parent species if it is to persist as an independent entity, but the role hybridization plays in this process is known in only a handful of cases. The homoploid hybrid ragwort species, Senecio squalidus (Oxford ragwort), originated following the introduction of hybrid plants to the UK approximately 320 years ago. The source of the hybrid plants was from a naturally occurring hybrid zone between S. aethnensis and S. chrysanthemifolius on Mount Etna, Sicily. Previous studies of the parent species found evidence for multiple incompatibility loci causing transmission ratio distortion of genetic markers in their hybrid progeny. This study closes the hybridization triangle by reporting a genetic mapping analysis of the remaining two paired cross combinations between S. squalidus and its parents. Genetic maps produced from F2 mapping families were generally collinear but with half of the linkage groups showing evidence of genomic reorganization between genetic maps. The new maps produced from crosses between S. squalidus and each parent showed multiple incompatibility loci distributed across the genome, some of which co-locate with previously reported incompatibility loci between the parents. These findings suggest that this young homoploid hybrid species has inherited a unique combination of genomic rearrangements and incompatibilities from its parents that contribute to its reproductive isolation.

13.
New Phytol ; 217(3): 1035-1041, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29131340

RESUMEN

Contents Summary 1035 I. Introduction 1035 II. Evolution of the pitcher 1036 III. Convergent evolution 1036 IV. Divergent evolution 1038 V. Adaptive radiation and speciation 1040 VI. Conclusions and perspectives 1040 Acknowledgements 1040 References 1040 SUMMARY: The pitcher trap is a striking example of convergent evolution across unrelated carnivorous plant lineages. Convergent traits that have evolved across pitcher plant lineages are essential for trap function, suggesting that key selective pressures are in action. Recent studies have also revealed patterns of divergent evolution in functional pitcher morphology within genera. Adaptations to differences in local prey assemblages may drive such divergence and, ultimately, speciation. Here, we review recent research on convergent and divergent evolution in pitcher plant traps, with a focus on the genus Nepenthes, which we propose as a new model for research into adaptive radiation and speciation.


Asunto(s)
Evolución Biológica , Sarraceniaceae/fisiología , Adaptación Fisiológica , Especiación Genética , Sarraceniaceae/ultraestructura
14.
Front Plant Sci ; 8: 1576, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28955364

RESUMEN

The olive tree is a crop of high socio-economical importance in the Mediterranean area. Sexual reproduction in this plant is an essential process, which determines the yield. Successful fertilization is mainly favored and sometimes needed of the presence of pollen grains from a different cultivar as the olive seizes a self-incompatibility system allegedly determined of the sporophytic type. The purpose of the present study was to identify key gene products involved in the function of olive pollen and pistil, in order to help elucidate the events and signaling processes, which happen during the courtship, pollen grain germination, and fertilization in olive. The use of subtractive SSH libraries constructed using, on the one hand one specific stage of the pistil development with germinating pollen grains, and on the other hand mature pollen grains may help to reveal the specific transcripts involved in the cited events. Such libraries have also been created by subtracting vegetative mRNAs (from leaves), in order to identify reproductive sequences only. A variety of transcripts have been identified in the mature pollen grains and in the pistil at the receptive stage. Among them, those related to defense, transport and oxidative metabolism are highlighted mainly in the pistil libraries where transcripts related to stress, and response to biotic and abiotic stimulus have a prominent position. Extensive lists containing information as regard to the specific transcripts determined for each stage and tissue are provided, as well as functional classifications of these gene products. Such lists were faced up to two recent datasets obtained in olive after transcriptomic and genomic approaches. The sequences and the differential expression level of the SSH-transcripts identified here, highly matched the transcriptomic information. Moreover, the unique presence of a representative number of these transcripts has been validated by means of qPCR approaches. The construction of SSH libraries using pistil and pollen, considering the high interaction between male-female counterparts, allowed the identification of transcripts with important roles in stigma physiology. The functions of many of the transcripts obtained are intimately related, and most of them are of pivotal importance in defense, pollen-stigma interaction and signaling.

15.
Front Plant Sci ; 7: 1112, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27547207

RESUMEN

Accumulation of reactive oxygen species (ROS) in the stigma of several plant species has been investigated. Four developmental stages (unopened flower buds, recently opened flowers, dehiscent anthers, and flowers after fertilization) were analyzed by confocal laser scanning microscopy using the ROS-specific probe DCFH2-DA. In all plants scrutinized, the presence of ROS in the stigmas was detected at higher levels during those developmental phases considered "receptive" to pollen interaction. In addition, these molecules were also present at early (unopened flower) or later (post-fertilization) stages, by following differential patterns depending on the different species. The biological significance of the presence ROS may differ between these stages, including defense functions, signaling and senescence. Pollen-stigma signaling is likely involved in the different mechanisms of self-incompatibility in these plants. The study also register a general decrease in the presence of ROS in the stigmas upon pollination, when NO is supposedly produced in an active manner by pollen grains. Finally, the distribution of ROS in primitive Angiosperms of the genus Magnolia was determined. The production of such chemical species in these plants was several orders of magnitude higher than in the remaining species evoking a massive displacement toward the defense function. This might indicate that signaling functions of ROS/NO in the stigma evolved later, as fine tune likely involved in specialized interactions like self-incompatibility.

16.
New Phytol ; 211(4): 1170-87, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27214560

RESUMEN

Contents 1170 I. 1170 II. 1172 III. 1175 IV. 1180 V. 1183 1184 References 1184 SUMMARY: An unintended consequence of global change is an increase in opportunities for hybridization among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographical isolation and phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridization 'experiments', allowing us to peer into the birth and death of evolutionary lineages.


Asunto(s)
Cambio Climático , Especiación Genética , Hibridación Genética , Ecosistema , Infertilidad Vegetal/fisiología , Cigoto/fisiología
17.
AoB Plants ; 82016.
Artículo en Inglés | MEDLINE | ID: mdl-27083198

RESUMEN

Knowledge of the genetic basis of phenotypic divergence between species and how such divergence is caused and maintained is crucial to an understanding of speciation and the generation of biodiversity. The hybrid zone between Senecio aethnensis and S. chrysanthemifolius on Mount Etna, Sicily, provides a well-studied example of species divergence in response to conditions at different elevations, despite hybridization and gene flow. Here, we investigate the genetic architecture of divergence between these two species using a combination of quantitative trait locus (QTL) mapping and genetic differentiation measures based on genetic marker analysis. A QTL architecture characterized by physical QTL clustering, epistatic interactions between QTLs, and pleiotropy was identified, and is consistent with the presence of divergent QTL complexes resistant to gene flow. A role for divergent selection between species was indicated by significant negative associations between levels of interspecific genetic differentiation at mapped marker gene loci and map distance from QTLs and hybrid incompatibility loci. Within-species selection contributing to interspecific differentiation was evidenced by negative associations between interspecific genetic differentiation and genetic diversity within species. These results show that the two Senecio species, while subject to gene flow, maintain divergent genomic regions consistent with local selection within species and selection against hybrids between species which, in turn, contribute to the maintenance of their distinct phenotypic differences.

18.
Am J Bot ; 101(4): 637-51, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24658278

RESUMEN

PREMISE OF THE STUDY: Geographic isolation, habitat shifts, and hybridization have contributed to the diversification of oceanic island floras. We investigated the contribution of these processes to the diversification of Pericallis, a genus endemic to Macaronesia. METHODS: Data from the chloroplast psaI-accD and trnV-ndhC regions and the nuclear ribosomal internal transcribed spacer region (ITS) were sampled for multiple accessions of all taxa and used to establish phylogenetic hypotheses. Habitat preferences were optimized to investigate habitat shifts, and divergence times were estimated. Species nonmonophyly was investigated using Bayes factors. KEY RESULTS: Much of the diversification in Pericallis has occurred recently, within the past 1.7 Ma. Three habitat shifts have occurred in the evolution of the genus. However, geographic isolation has played a greater role in its diversification. Novel allopatric patterns were revealed within some species, highlighting the significance of geographic isolation in the evolution of Pericallis. One species (P. appendiculata) that resolved as monophyletic in the ITS analysis was polyphyletic in the chloroplast analysis. Bayes factors provide strong support for the nonmonophyly of P. appendiculata haplotypes, and their phylogenetic placement suggests that ancient hybridization is responsible for the haplotype diversity observed. CONCLUSIONS: Multiple markers and extensive sampling provided new insights into the evolution of Pericallis. In contrast to previous studies, our results reveal a more significant role for allopatry than habitat shifts and new evidence for ancient hybridization in the evolution of Pericallis. Our study highlights the power of broad taxon sampling for unraveling diversity patterns and processes within oceanic island radiations.


Asunto(s)
Asteraceae/genética , Asteraceae/fisiología , Evolución Biológica , Ecosistema , Especiación Genética , Azores , Código de Barras del ADN Taxonómico , ADN Intergénico/genética , Evolución Molecular , Geografía , Hibridación Genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Portugal , Análisis de Secuencia de ADN , España
19.
Trends Plant Sci ; 19(3): 175-82, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24405820

RESUMEN

microRNAs (miRNAs) are short noncoding regulatory genes that perform important roles in plant development and physiology. With the increasing power of next generation sequencing technologies and the development of bioinformatic tools, there has been a dramatic increase in the number of studies surveying the miRNAomes of plant species, which has led to an explosion in the number of described miRNAs. Unfortunately, very many of these new discoveries have been incompletely annotated and thus fail to discriminate genuine miRNAs from small interfering RNAs (siRNAs), fragments of longer RNAs, and random sequence. We review the published repertoire of plant miRNAs, discriminating those that have been correctly annotated. We use these data to explore prevailing hypotheses on the tempo and mode of miRNA evolution within the plant kingdom.


Asunto(s)
MicroARNs/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , ARN de Planta/genética , ARN Interferente Pequeño/genética
20.
Mol Biol Evol ; 30(12): 2553-67, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24077768

RESUMEN

Even though Darwin's "On the Origin of Species" implied selection being the main driver of species formation, the role of natural selection in speciation remains poorly understood. In particular, it remains unclear how selection at a few genes can lead to genomewide divergence and the formation of distinct species. We used a particularly attractive clear-cut case of recent plant ecological speciation to investigate the demography and genomic bases of species formation driven by adaptation to contrasting conditions. High-altitude Senecio aethnensis and low-altitude S. chrysanthemifolius live at the extremes of a mountain slope on Mt. Etna, Sicily, and form a hybrid zone at intermediate altitudes but remain morphologically distinct. Genetic differentiation of these species was analyzed at the DNA polymorphism and gene expression levels by high-throughput sequencing of transcriptomes from multiple individuals. Out of ≈ 18,000 genes analyzed, only a small number (90) displayed differential expression between the two species. These genes showed significantly elevated species differentiation (FST and Dxy), consistent with diversifying selection acting on these genes. Genomewide genetic differentiation of the species is surprisingly low (FST = 0.19), while ≈ 200 genes showed significantly higher (false discovery rate < 1%; mean outlier FST > 0.6) interspecific differentiation and evidence for local adaptation. Diversifying selection at only a handful of loci may be enough for the formation and maintenance of taxonomically well-defined species, despite ongoing gene flow. This provides an explanation of why many closely related species (in plants, in particular) remain phenotypically and ecologically distinct despite ongoing hybridization, a question that has long puzzled naturalists and geneticists alike.


Asunto(s)
Altitud , ADN de Plantas/análisis , Especiación Genética , Variación Genética , Senecio/clasificación , Senecio/genética , Adaptación Fisiológica , Evolución Molecular , Flujo Génico , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento , Hibridación Genética , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo Genético , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA