Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 4): 746-757, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37145139

RESUMEN

Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g. below 200 eV to 600 eV) on samples with weakly scattering signals can be challenging. Here, results of soft X-ray spectro-ptychography at energies as low as 180 eV are presented, and its capabilities are illustrated with results from permalloy nanorods (Fe 2p), carbon nanotubes (C 1s) and boron nitride bamboo nanostructures (B 1s, N 1s). The optimization of low-energy X-ray spectro-ptychography is described and important challenges associated with measurement approaches, reconstruction algorithms and their effects on the reconstructed images are discussed. A method for evaluating the increase in radiation dose when using overlapping sampling is presented.


Asunto(s)
Nanotubos de Carbono , Rayos X , Nanotubos de Carbono/química , Radiografía , Compuestos de Boro
2.
ACS Catal ; 12(15): 8746-8760, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35966605

RESUMEN

Atomically dispersed metal-nitrogen-carbon (M-N-C) materials are a class of electrocatalysts for fuel cell and electrochemical CO2 reduction (CO2R) applications. However, it is challenging to characterize the identity and concentration of catalytically active species owing to the structural heterogeneity of M-N-C materials. We utilize scanning transmission X-ray microscopy (STXM) as a correlative spectromicroscopy approach for spatially resolved imaging, identification, and quantification of structures and chemical species in mesoscale regions of nickel-nitrogen-carbon (Ni-N-C) catalysts, thereby elucidating the relationship between Ni content/speciation and CO2R activity/selectivity. STXM results are correlated with conventional characterization approaches relying on either bulk average (X-ray absorption spectroscopy) or spatially localized (scanning transmission electron microscopy with electron energy loss spectroscopy) measurements. This comparison illustrates the advantages of soft X-ray STXM to provide spatially resolved identification and quantification of active structures in Ni-N-C catalysts. The active site structures in these catalysts are identified to be atomically dispersed NiN x /C sites distributed throughout entire catalyst particles. The NiN x /C sites were notably demonstrated by spectroscopy to possess a variety of chemical structures with a spectroscopic signature that most closely resembles nickel(II) tetraphenylporphyrin molecules. The quantification and spatial distribution mapping of atomically dispersed Ni active sites achieved by STXM address a target that was elusive to the scientific community despite its importance in guiding advanced material designs.

3.
J Synchrotron Radiat ; 28(Pt 3): 834-848, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949991

RESUMEN

X-ray absorption is a sensitive and versatile tool for chemical speciation. However, when high doses are used, the absorbed energy can change the composition, amount and structure of the native material, thereby changing the aspects of the absorption process on which speciation is based. How can one calculate the dose when X-ray irradiation affects the chemistry and changes the amount of the material? This paper presents an assumption-free approach which can retrieve from the experimental data all dose-sensitive parameters - absorption coefficients, composition (elemental molecular units), material densities - which can then be used to calculate accurate doses as a function of irradiation. This approach is illustrated using X-ray damage to a solid film of a perfluorosulfonic acid fluoropolymer in a scanning transmission soft X-ray microscope. This new approach is compared against existing dose models which calculate the dose by making simplifying assumptions regarding the material quantity, density and chemistry. While the detailed measurements used in this approach go beyond typical methods to experimental analytical X-ray absorption, they provide a more accurate quantitation of radiation dose, and help to understand mechanisms of radiation damage.

4.
Environ Microbiol ; 22(4): 1495-1506, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31188524

RESUMEN

The most well-recognized magnetoreception behaviour is that of the magnetotactic bacteria (MTB), which synthesize membrane-bounded magnetic nanocrystals called magnetosomes via a biologically controlled process. The magnetic minerals identified in prokaryotic magnetosomes are magnetite (Fe3 O4 ) and greigite (Fe3 S4 ). Magnetosome crystals, regardless of composition, have consistent, species-specific morphologies and single-domain size range. Because of these features, magnetosome magnetite crystals possess specific properties in comparison to abiotic, chemically synthesized magnetite. Despite numerous discoveries regarding MTB phylogeny over the last decades, this diversity is still considered underestimated. Characterization of magnetotactic microorganisms is important as it might provide insights into the origin and establishment of magnetoreception in general, including eukaryotes. Here, we describe the magnetotactic behaviour and characterize the magnetosomes from a flagellated protist using culture-independent methods. Results strongly suggest that, unlike previously described magnetotactic protists, this flagellate is capable of biomineralizing its own anisotropic magnetite magnetosomes, which are aligned in complex aggregations of multiple chains within the cell. This organism has a similar response to magnetic field inversions as MTB. Therefore, this eukaryotic species might represent an early origin of magnetoreception based on magnetite biomineralization. It should add to the definition of parameters and criteria to classify biogenic magnetite in the fossil record.


Asunto(s)
Óxido Ferrosoférrico/metabolismo , Magnetosomas/metabolismo , Evolución Biológica , Biomineralización , Eucariontes , Flagelos , Fenómenos Magnéticos
5.
Phys Biol ; 16(6): 066008, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31181559

RESUMEN

While most quantitative studies of the motion of magnetotactic bacteria rely on the premise that the cells' magnetic dipole moment is aligned with their direction of motility, this assumption has so far rarely been challenged. Here we use phase contrast microscopy to detect the rotational diffusion of non-motile cells of Magnetospirillum magneticum AMB-1 around their magnetic moment, showing that in this species the magnetic dipole moment is, in fact, not exactly aligned with the cell body axis. From the cell rotational trajectories, we are able to infer the misalignment between cell magnetic moment and body axis with a precision of better than 1°, showing that it is, on average, 6°, and can be as high as 20°. We propose a method to correct for this misalignment, and perform a non-biased measurement of the magnetic moment of single cells based on the analysis of their orientation distribution. Using this correction, we show that magnetic moment strongly correlates with cell length. The existence of a range of misalignments between magnetic moment and cell axis in a population implies that the orientation and trajectories of magnetotactic bacteria placed in external magnetic fields is more complex than generally assumed, and might show some important cell-to-cell differences.


Asunto(s)
Campos Magnéticos , Magnetospirillum/efectos de la radiación , Magnetospirillum/fisiología
6.
Micron ; 121: 8-20, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30875488

RESUMEN

Scanning transmission X-ray microscopy (STXM) was used to study chemical changes to perfluorosulfonic acid (PFSA) spun cast thin films as a function of dose imparted by exposure of a 200 kV electron beam in a Transmission Electron Microscope (TEM). The relationship between electron beam fluence and absorbed dose was calibrated using a modified version of a protocol based on the positive to negative lithography transition in PMMA [Leontowich et al, J. Synchrotron Rad. 19 (2012) 976]. STXM was used to characterize and quantify the chemical changes caused by electron irradiation of PFSA under several different conditions. The critical dose for CF2-CF2 amorphization was used to explore the effects of the sample environment on electron beam damage. Use of a silicon nitride substrate was found to increase the CF2-CF2 amorphization critical dose by ∼x2 from that for free-standing PFSA films. Freestanding PFSA and PMMA films were damaged by 200 kV electrons at ∼100 K and then the damage was measured by STXM at 300 K (RT). The lithography cross-over dose for PMMA was found to be ∼2x higher when the PMMA thin film was electron irradiated at 120 K rather than at 300 K. The critical dose for CF2-CF2 amorphization in PFSA irradiated at 120 K followed by warming and delayed measurement by STXM at 300 K was found to be ∼2x larger than at 300 K. To place these results in the context of the use of electron microscopy to study PFSA ionomer in fuel cell systems, an exposure of 300 e-/nm2 at 300 K (which corresponds to an absorbed dose of ∼20 MGy) amorphizes ∼10% of the CF2-CF2 bonds in PFSA. At this dose level, the spatial resolution for TEM imaging of PFSA is limited to 3.5 nm by radiation damage, if one is using a direct electron detector with DQE = 1. This work recommends caution about 2D and 3D morphological information of PFSA materials based on TEM studies which use fluences higher than 300 e-/nm2.

7.
Micron ; 120: 74-79, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30802756

RESUMEN

Focused ion beam coupled with scanning electron microscopy (FIB-SEM) is a popular technique for advanced electron microscopy with applications such as, high-precision site-specific lamella sample preparation for transmission electron microscopy (TEM) and slice-and-view FIB 3-dimensional tomography. Damage caused by the electron imaging component of FIB-SEM may be compounded with damage from the ions during the ion milling process. There are known strategies for mitigating damage from ions and electrons (cryo-SEM, dose-control, voltage control), but the electron damage on common embedding resins for EM has not been explored in detail beyond their resistance to shape-change. The relationship between beam parameters and damage mechanisms remains unclear. Since we are relying on the physical, chemical and thermal stability of embedded samples during ion-beam milling, it is important to distinguish electron beam damage from ion beam damage. Scanning transmission X-ray microscopy (STXM) has been used for analyzing the electron beam radiation damage on polymer films by characterizing the chemical bonding changes. In this paper, we focus on the effect of beam voltage and electron dose on electron beam damage to epoxy resin thin films. Irradiated areas on polymer thin films were characterized by near edge X-ray absorption fine structure (NEXAFS) in STXM. We found that, even when using low current and voltage, the electron beam can still cause noticeable chemical changes within the polymer film. The degree of electron beam damage depends not only on the beam energy, but also on the amount of inelastic scattering occurring within the material, as determined by the sample thickness.

8.
Sci Rep ; 8(1): 12367, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120270

RESUMEN

The formation of amyloid-ß plaques is one of the hallmarks of Alzheimer's disease. The presence of an amphiphatic cell membrane can accelerate the formation of amyloid-ß aggregates, making it a potential druggable target to delay the progression of Alzheimer's disease. We have prepared unsaturated anionic membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and added the trans-membrane segment Aß25-35. Peptide plaques spontaneously form in these membranes at high peptide concentrations of 20 mol%, which show the characteristic cross-ß motif (concentrations are relative to the number of membrane lipids and indicate the peptide-to-lipid ratio). We used atomic force microscopy, fluorescence microscopy, x-ray microscopy, x-ray diffraction, UV-vis spectroscopy and Molecular Dynamics (MD) simulations to study three membrane-active molecules which have been speculated to have an effect in Alzheimer's disease: melatonin, acetylsalicyclic acid (ASA) and curcumin at concentrations of 5 mol% (drug-to-peptide ratio). Melatonin did not change the structural parameters of the membranes and did not impact the size or extent of peptide clusters. While ASA led to a membrane thickening and stiffening, curcumin made membranes softer and thinner. As a result, ASA was found to lead to the formation of larger peptide aggregates, whereas curcumin reduced the volume fraction of cross-ß sheets by ~70%. We speculate that the interface between membrane and peptide cluster becomes less favorable in thick and stiff membranes, which favors the formation of larger aggregates, while the corresponding energy mismatch is reduced in soft and thin membranes. Our results present evidence that cross-ß sheets of Aß25-35 in anionic unsaturated lipid membranes can be re-dissolved by changing membrane properties to reduce domain mismatch.


Asunto(s)
Péptidos beta-Amiloides/química , Aniones/química , Tomografía con Microscopio Electrónico , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Microscopía de Fuerza Atómica , Modelos Teóricos , Simulación de Dinámica Molecular , Difracción de Rayos X
9.
Rev Sci Instrum ; 89(6): 063702, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960523

RESUMEN

We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).

10.
Phys Chem Chem Phys ; 20(24): 16625-16640, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29873342

RESUMEN

The thicknesses of thin films of polystyrene (PS), poly(methyl methacrylate) (PMMA), and perfluorosulfonic acid (PFSA) were measured by Ultraviolet Spectral Reflectance (UV-SR) and Scanning Transmission X-ray Microscopy (STXM). At high doses, the UV irradiation in air used in the UV-SR method was found to modify the chemical structures of PS and PMMA (but not PFSA), leading to thinning of these polymer films. The chemical changes caused by UV/air radiation damage were characterized by STXM. When UV and X-ray radiation are applied using no-damage conditions, the film thicknesses measured with the two techniques differ by less than 15% for PS and PMMA and less than 5% for PFSA. This is an important result for verifying the quantitation capabilities of STXM. The chemical damage to PS and PMMA is explained by oxygen implantation from air with formation of ozone. The thickness depletion caused by UV/air radiation for PS and PMMA films is exponential with exposure time. Different rates of depletion are linked to surface or bulk driven photo-chemical product erosion. The initial rate of material erosion was found to be constant and non-specific to the studied polymers.

11.
J Synchrotron Radiat ; 25(Pt 3): 833-847, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714195

RESUMEN

A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

12.
Proteomics ; 18(3-4)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29280319

RESUMEN

The emergence of multidrug resistance in bacteria has reached alarming levels. To solve this growing problem, discovery of novel cellular targets or pathways important for antimicrobial resistance is urgently needed. In this study, we explored how the alternative sigma factor, RpoE, protects Escherichia coli O157 against the toxic effects of the polycationic antimicrobial agent, chlorhexidine (CHX). Susceptibility of this organism to CHX was found to directly correlate to the growth rate, with the faster replicating wild-type being more susceptible to CHX than its more slowly replicating ΔrpoE O157 mutant. Once the wild-type and rpoE mutant strains had undergone growth arrest (entered the stationary growth phase), their resistance to CHX became entirely dependent on the functionality of RpoE. The RpoE regulon plays a critical role in maintaining the integrity of the asymmetric lipid bilayer of E. coli, thereby preventing the intracellular accumulation of CHX. Finally, using a single-cell, high-resolution, synchrotron-based approach, we discovered a subpopulation of the rpoE mutant strain with no detectable intracellular CHX, a predominant characteristic of the wild-type CHX-resistant population. This finding reveals a role of phenotypic heterogeneity in antimicrobial resistance.


Asunto(s)
Antiinfecciosos Locales/farmacología , Proteínas Bacterianas/genética , Clorhexidina/farmacología , Escherichia coli/efectos de los fármacos , Membrana Dobles de Lípidos/química , Regulón , Factor sigma/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Membrana Dobles de Lípidos/metabolismo
13.
Microsc Microanal ; 23(5): 951-966, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28893337

RESUMEN

Soft X-ray spectro-tomography provides three-dimensional (3D) chemical mapping based on natural X-ray absorption properties. Since radiation damage is intrinsic to X-ray absorption, it is important to find ways to maximize signal within a given dose. For tomography, using the smallest number of tilt series images that gives a faithful reconstruction is one such method. Compressed sensing (CS) methods have relatively recently been applied to tomographic reconstruction algorithms, providing faithful 3D reconstructions with a much smaller number of projection images than when conventional reconstruction methods are used. Here, CS is applied in the context of scanning transmission X-ray microscopy tomography. Reconstructions by weighted back-projection, the simultaneous iterative reconstruction technique, and CS are compared. The effects of varying tilt angle increment and angular range for the tomographic reconstructions are examined. Optimization of the regularization parameter in the CS reconstruction is explored and discussed. The comparisons show that CS can provide improved reconstruction fidelity relative to weighted back-projection and simultaneous iterative reconstruction techniques, with increasingly pronounced advantages as the angular sampling is reduced. In particular, missing wedge artifacts are significantly reduced and there is enhanced recovery of sharp edges. Examples of using CS for low-dose scanning transmission X-ray microscopy spectroscopic tomography are presented.

14.
Cell Chem Biol ; 24(10): 1205-1215.e3, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28890316

RESUMEN

A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aß) fibrils in the brain. Nevertheless, the links between Aß and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aß1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aß. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aß-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Hierro/metabolismo , Placa Amiloide/complicaciones , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Microscopía Electrónica de Transmisión , Oxidación-Reducción
15.
J Phys Chem B ; 121(17): 4492-4501, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28398060

RESUMEN

The C 1s, O 1s, and N 1s X-ray absorption spectra of three lipid species, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and 1,2-dioleoyl-3-trimethylammonium-propane (chloride salt) (DOTAP), have been recorded using transmission detection in a scanning transmission X-ray microscope. The spectra are presented on an absolute intensity scale (i.e., optical density per nm) to allow their use as reference standards for spectromicroscopic analysis of supported lipid bilayers. Examples of C 1s based spectromicroscopic mapping of saturated and unsaturated domains in dry lipid bilayers of DOPC and DSPC at several compositions are presented. The results are compared with fluorescence microscopy of the same area. Challenges for extending this work to studies of wet lipid bilayers interacting with antimicrobial peptides are discussed.


Asunto(s)
Membrana Dobles de Lípidos/química , Péptidos Catiónicos Antimicrobianos/química , Microscopía Fluorescente , Estructura Molecular , Espectroscopía de Absorción de Rayos X
16.
Proc Natl Acad Sci U S A ; 113(51): E8219-E8227, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930297

RESUMEN

Characterizing the chemistry and magnetism of magnetotactic bacteria (MTB) is an important aspect of understanding the biomineralization mechanism and function of the chains of magnetosomes (Fe3O4 nanoparticles) found in such species. Images and X-ray absorption spectra (XAS) of magnetosomes extracted from, and magnetosomes in, whole Magnetovibrio blakemorei strain MV-1 cells have been recorded using soft X-ray ptychography at the Fe 2p edge. A spatial resolution of 7 nm is demonstrated. Precursor-like and immature magnetosome phases in a whole MV-1 cell were visualized, and their Fe 2p spectra were measured. Based on these results, a model for the pathway of magnetosome biomineralization for MV-1 is proposed. Fe 2p X-ray magnetic circular dichroism (XMCD) spectra have been derived from ptychography image sequences recorded using left and right circular polarization. The shape of the XAS and XMCD signals in the ptychographic absorption spectra of both sample types is identical to the shape and signals measured with conventional bright-field scanning transmission X-ray microscope. A weaker and inverted XMCD signal was observed in the ptychographic phase spectra of the extracted magnetosomes. The XMCD ptychographic phase spectrum of the intracellular magnetosomes differed from the ptychographic phase spectrum of the extracted magnetosomes. These results demonstrate that spectro-ptychography offers a superior means of characterizing the chemical and magnetic properties of MTB at the individual magnetosome level.


Asunto(s)
Magnetosomas/metabolismo , Magnetospirillum/citología , Microscopía/instrumentación , Microscopía/métodos , Rhodospirillaceae/citología , Óxido Ferrosoférrico/metabolismo , Magnetismo , Radiografía , Análisis Espectral , Rayos X
17.
Sci Rep ; 6: 35605, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27748425

RESUMEN

C60 fullerene crystals may serve as important catalysts for interstellar organic chemistry. To explore this possibility, the electronic structures of free-standing powders of C60 and (C59N)2 azafullerenes are characterized using X-ray microscopy with near-edge X-ray adsorption fine structure (NEXAFS) spectroscopy, closely coupled with density functional theory (DFT) calculations. This is supported with X-ray photoelectron spectroscopy (XPS) measurements and associated core-level shift DFT calculations. We compare the oxygen 1s spectra from oxygen impurities in C60 and C59N, and calculate a range of possible oxidized and hydroxylated structures and associated formation barriers. These results allow us to propose a model for the oxygen present in these samples, notably the importance of water surface adsorption and possible ice formation. Water adsorption on C60 crystal surfaces may prove important for astrobiological studies of interstellar amino acid formation.

18.
Langmuir ; 32(41): 10491-10496, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27661087

RESUMEN

It is shown that the self-assembly of diamagnetic molecule submonolayers on a surface can be influenced by magnetic stray field landscapes emerging from artificially fabricated magnetic domains and domain walls. The directed local chemisorption of diamagnetic subphthalocyaninatoboron molecules in relation to the artificially created domain pattern is proved by a combination of surface analytical methods: ToF-SIMS, X-PEEM, and NEXAFS imaging. Thereby, a new method to influence self-assembly processes and to produce patterned submonolayers is presented.

19.
PLoS One ; 10(3): e0122959, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25811457

RESUMEN

Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.


Asunto(s)
Biopolímeros/química , Plantas/química , Espectroscopía de Absorción de Rayos X , Lens (Planta)/química , Tallos de la Planta/química , Tallos de la Planta/citología , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X/métodos
20.
J Synchrotron Radiat ; 21(Pt 5): 1019-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25177991

RESUMEN

Current and future capabilities of X-ray spectromicroscopy are discussed based on coherence-limited imaging methods which will benefit from the dramatic increase in brightness expected from a diffraction-limited storage ring (DLSR). The methods discussed include advanced coherent diffraction techniques and nanoprobe-based real-space imaging using Fresnel zone plates or other diffractive optics whose performance is affected by the degree of coherence. The capabilities of current systems, improvements which can be expected, and some of the important scientific themes which will be impacted are described, with focus on energy materials applications. Potential performance improvements of these techniques based on anticipated DLSR performance are estimated. Several examples of energy sciences research problems which are out of reach of current instrumentation, but which might be solved with the enhanced DLSR performance, are discussed.


Asunto(s)
Suministros de Energía Eléctrica , Aumento de la Imagen/métodos , Difracción de Rayos X/métodos , Diseño de Equipo , Aumento de la Imagen/instrumentación , Microscopía , Óptica y Fotónica , Dispersión de Radiación , Sincrotrones , Difracción de Rayos X/instrumentación , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...