Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8012): 710-716, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693265

RESUMEN

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Asunto(s)
Colina , Etanolamina , Proteínas de Transporte de Membrana , Modelos Moleculares , Humanos , Colina/metabolismo , Sitios de Unión , Etanolamina/metabolismo , Etanolamina/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Fosfatidiletanolaminas/metabolismo , Transporte Biológico , Animales , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Fosforilación
2.
Science ; 382(6672): 820-828, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37917749

RESUMEN

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Asunto(s)
Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Glutatión , Mitocondrias , Proteínas Mitocondriales , Proteínas de Transporte de Fosfato , Glutatión/metabolismo , Homeostasis , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteómica , Retroalimentación Fisiológica , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Humanos , Proteínas Hierro-Azufre/metabolismo , Proteolisis , Células HEK293 , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo
3.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37808796

RESUMEN

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the importance of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here, we show that FLVCR1, whose mutation leads to the neurodegenerative syndrome PCARP7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprised of aromatic and polar residues. Despite binding to a common site, the larger quaternary amine of choline interacts differently with FLVCR1 than does the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are critical for the transport of ethanolamine, while being dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLCVR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.

4.
Nat Commun ; 14(1): 6897, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898605

RESUMEN

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are endoplasmic reticulum Ca2+ channels whose biphasic dependence on cytosolic Ca2+ gives rise to Ca2+ oscillations that regulate fertilization, cell division and cell death. Despite the critical roles of IP3R-mediated Ca2+ responses, the structural underpinnings of the biphasic Ca2+ dependence that underlies Ca2+ oscillations are incompletely understood. Here, we collect cryo-EM images of an IP3R with Ca2+ concentrations spanning five orders of magnitude. Unbiased image analysis reveals that Ca2+ binding does not explicitly induce conformational changes but rather biases a complex conformational landscape consisting of resting, preactivated, activated, and inhibited states. Using particle counts as a proxy for relative conformational free energy, we demonstrate that Ca2+ binding at a high-affinity site allows IP3Rs to activate by escaping a low-energy resting state through an ensemble of preactivated states. At high Ca2+ concentrations, IP3Rs preferentially enter an inhibited state stabilized by a second, low-affinity Ca2+ binding site. Together, these studies provide a mechanistic basis for the biphasic Ca2+-dependence of IP3R channel activity.


Asunto(s)
Retículo Endoplásmico , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Conformación Molecular , Retículo Endoplásmico/metabolismo , Dominios Proteicos , Calcio/metabolismo , Señalización del Calcio
5.
Cell Metab ; 35(6): 1057-1071.e12, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100056

RESUMEN

Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.


Asunto(s)
Estudio de Asociación del Genoma Completo , Receptores Virales , Humanos , Animales , Ratones , Receptores Virales/metabolismo , Mutación , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mamíferos/metabolismo , Colina
6.
Nat Commun ; 13(1): 7373, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450733

RESUMEN

The plasma membrane's main constituents, i.e., phospholipids and membrane proteins, are known to be organized in lipid-protein functional domains and supercomplexes. No active membrane-intrinsic process is known to establish membrane organization. Thus, the interplay of thermal fluctuations and the biophysical determinants of membrane-mediated protein interactions must be considered to understand membrane protein organization. Here, we used high-speed atomic force microscopy and kinetic and membrane elastic theory to investigate the behavior of a model membrane protein in oligomerization and assembly in controlled lipid environments. We find that membrane hydrophobic mismatch modulates oligomerization and assembly energetics, and 2D organization. Our experimental and theoretical frameworks reveal how membrane organization can emerge from Brownian diffusion and a minimal set of physical properties of the membrane constituents.


Asunto(s)
Proteínas de la Membrana , Fosfolípidos , Membranas , Biofisica , Dominios Proteicos
7.
Proc Natl Acad Sci U S A ; 119(44): e2208882119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279431

RESUMEN

Transmembrane protein 175 (TMEM175) is an evolutionarily distinct lysosomal cation channel whose mutation is associated with the development of Parkinson's disease. Here, we present a cryoelectron microscopy structure and molecular simulations of TMEM175 bound to 4-aminopyridine (4-AP), the only known small-molecule inhibitor of TMEM175 and a broad K+ channel inhibitor, as well as a drug approved by the Food and Drug Administration against multiple sclerosis. The structure shows that 4-AP, whose mode of action had not been previously visualized, binds near the center of the ion conduction pathway, in the open state of the channel. Molecular dynamics simulations reveal that this binding site is near the middle of the transmembrane potential gradient, providing a rationale for the voltage-dependent dissociation of 4-AP from TMEM175. Interestingly, bound 4-AP rapidly switches between three predominant binding poses, stabilized by alternate interaction patterns dictated by the twofold symmetry of the channel. Despite this highly dynamic binding mode, bound 4-AP prevents not only ion permeation but also water flow. Together, these studies provide a framework for the rational design of novel small-molecule inhibitors of TMEM175 that might reveal the role of this channel in human lysosomal physiology both in health and disease.


Asunto(s)
4-Aminopiridina , Canales de Potasio , Humanos , 4-Aminopiridina/farmacología , Canales de Potasio/metabolismo , Microscopía por Crioelectrón , Lisosomas/metabolismo , Agua/metabolismo
8.
Elife ; 112022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35939393

RESUMEN

The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is an essential co-factor for many eukaryotic DNA metabolic enzymes. PCNA is loaded around DNA by the ATP-dependent clamp loader replication factor C (RFC), which acts at single-stranded (ss)/double-stranded DNA (dsDNA) junctions harboring a recessed 3' end (3' ss/dsDNA junctions) and at DNA nicks. To illuminate the loading mechanism we have investigated the structure of RFC:PCNA bound to ATPγS and 3' ss/dsDNA junctions or nicked DNA using cryogenic electron microscopy. Unexpectedly, we observe open and closed PCNA conformations in the RFC:PCNA:DNA complex, revealing that PCNA can adopt an open, planar conformation that allows direct insertion of dsDNA, and raising the question of whether PCNA ring closure is mechanistically coupled to ATP hydrolysis. By resolving multiple DNA-bound states of RFC:PCNA we observe that partial melting facilitates lateral insertion into the central channel formed by RFC:PCNA. We also resolve the Rfc1 N-terminal domain and demonstrate that its single BRCT domain participates in coordinating DNA prior to insertion into the central RFC channel, which promotes PCNA loading on the lagging strand of replication forks in vitro. Combined, our data suggest a comprehensive and fundamentally revised model for the RFC-catalyzed loading of PCNA onto DNA.


Asunto(s)
ADN , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Conformación Proteica , Proteína de Replicación C/química , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Nat Commun ; 13(1): 4095, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835792

RESUMEN

G-protein-coupled receptors (GPCRs) receive signals from ligands with different efficacies, and transduce to heterotrimeric G-proteins to generate different degrees of physiological responses. Previous studies revealed how ligands with different efficacies activate GPCRs. Here, we investigate how a GPCR activates G-proteins upon binding ligands with different efficacies. We report the cryo-EM structures of ß1-adrenergic receptor (ß1-AR) in complex with Gs (GαsGß1Gγ2) and a partial agonist or a very weak partial agonist, and compare them to the ß1-AR-Gs structure in complex with a full agonist. Analyses reveal similar overall complex architecture, with local conformational differences. Cellular functional studies with mutations of ß1-AR residues show effects on the cellular signaling from ß1-AR to the cAMP response initiated by the three different ligands, with residue-specific functional differences. Biochemical investigations uncover that the intermediate state complex comprising ß1-AR and nucleotide-free Gs is more stable when binding a full agonist than a partial agonist. Molecular dynamics simulations support the local conformational flexibilities and different stabilities among the three complexes. These data provide insights into the ligand efficacy in the activation of GPCRs and G-proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Receptores Acoplados a Proteínas G , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Ligandos , Conformación Molecular , Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
10.
Elife ; 112022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35608336

RESUMEN

Structures of the human lysosomal K+ channel transmembrane protein 175 (TMEM175) in open and closed states revealed a novel architecture lacking the canonical K+ selectivity filter motif present in previously known K+ channel structures. A hydrophobic constriction composed of four isoleucine residues was resolved in the pore and proposed to serve as the gate in the closed state, and to confer ion selectivity in the open state. Here, we achieve higher-resolution structures of the open and closed states and employ molecular dynamics simulations to analyze the conducting properties of the putative open state, demonstrating that it is permeable to K+ and, to a lesser degree, also Na+. Both cations must dehydrate significantly to penetrate the narrow hydrophobic constriction, but ion flow is assisted by a favorable electrostatic field generated by the protein that spans the length of the pore. The balance of these opposing energetic factors explains why permeation is feasible, and why TMEM175 is selective for K+ over Na+, despite the absence of the canonical selectivity filter. Accordingly, mutagenesis experiments reveal an exquisite sensitivity of the channel to perturbations that mitigate the constriction. Together, these data reveal a novel mechanism for selective permeation of ions by TMEM175 that is unlike that of other K+ channels.


Asunto(s)
Deshidratación , Canales de Potasio , Humanos , Iones/metabolismo , Lisosomas/metabolismo , Simulación de Dinámica Molecular , Potasio/metabolismo , Canales de Potasio/metabolismo , Conformación Proteica , Sodio/metabolismo
11.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35447082

RESUMEN

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Microscopía por Crioelectrón , ADN/metabolismo , Dimerización , Humanos , Masculino , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Activación Transcripcional
12.
Nat Struct Mol Biol ; 29(4): 369-375, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35314831

RESUMEN

Single-stranded or double-stranded DNA junctions with recessed 5' ends serve as loading sites for the checkpoint clamp, 9-1-1, which mediates activation of the apical checkpoint kinase, ATRMec1. However, the basis for 9-1-1's recruitment to 5' junctions is unclear. Here, we present structures of the yeast checkpoint clamp loader, Rad24-replication factor C (RFC), in complex with 9-1-1 and a 5' junction and in a post-ATP-hydrolysis state. Unexpectedly, 9-1-1 adopts both closed and planar open states in the presence of Rad24-RFC and DNA. Moreover, Rad24-RFC associates with the DNA junction in the opposite orientation of processivity clamp loaders with Rad24 exclusively coordinating the double-stranded region. ATP hydrolysis stimulates conformational changes in Rad24-RFC, leading to disengagement of DNA-loaded 9-1-1. Together, these structures explain 9-1-1's recruitment to 5' junctions and reveal new principles of sliding clamp loading.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato , Proteínas de Ciclo Celular , ADN/química , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Sci Adv ; 8(9): eabl5508, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245129

RESUMEN

ATP7A and ATP7B, two homologous copper-transporting P1B-type ATPases, play crucial roles in cellular copper homeostasis, and mutations cause Menkes and Wilson diseases, respectively. ATP7A/B contains a P-type ATPase core consisting of a membrane transport domain and three cytoplasmic domains, the A, P, and N domains, and a unique amino terminus comprising six consecutive metal-binding domains. Here, we present a cryo-electron microscopy structure of frog ATP7B in a copper-free state. Interacting with both the A and P domains, the metal-binding domains are poised to exert copper-dependent regulation of ATP hydrolysis coupled to transmembrane copper transport. A ring of negatively charged residues lines the cytoplasmic copper entrance that is presumably gated by a conserved basic residue sitting at the center. Within the membrane, a network of copper-coordinating ligands delineates a stepwise copper transport pathway. This work provides the first glimpse into the structure and function of ATP7 proteins and facilitates understanding of disease mechanisms and development of rational therapies.

14.
Nat Commun ; 13(1): 731, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136060

RESUMEN

Lysophospholipids are bioactive lipids and can signal through G-protein-coupled receptors (GPCRs). The best studied lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). The mechanisms of lysophospholipid recognition by an active GPCR, and the activations of lysophospholipid GPCR-G-protein complexes remain unclear. Here we report single-particle cryo-EM structures of human S1P receptor 1 (S1P1) and heterotrimeric Gi complexes formed with bound S1P or the multiple sclerosis (MS) treatment drug Siponimod, as well as human LPA receptor 1 (LPA1) and Gi complexes in the presence of LPA. Our structural and functional data provide insights into how LPA and S1P adopt different conformations to interact with their cognate GPCRs, the selectivity of the homologous lipid GPCRs for S1P versus LPA, and the different activation mechanisms of these GPCRs by LPA and S1P. Our studies also reveal specific optimization strategies to improve the MS-treating S1P1-targeting drugs.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Azetidinas/farmacología , Azetidinas/uso terapéutico , Compuestos de Bencilo/farmacología , Compuestos de Bencilo/uso terapéutico , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/aislamiento & purificación , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Humanos , Lisofosfolípidos/metabolismo , Conformación Molecular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/aislamiento & purificación , Receptores del Ácido Lisofosfatídico/ultraestructura , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Células Sf9 , Imagen Individual de Molécula , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/aislamiento & purificación , Receptores de Esfingosina-1-Fosfato/ultraestructura , Spodoptera
15.
Nat Struct Mol Biol ; 28(11): 936-944, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759376

RESUMEN

The ß1-adrenergic receptor (ß1-AR) can activate two families of G proteins. When coupled to Gs, ß1-AR increases cardiac output, and coupling to Gi leads to decreased responsiveness in myocardial infarction. By comparative structural analysis of turkey ß1-AR complexed with either Gi or Gs, we investigate how a single G-protein-coupled receptor simultaneously signals through two G proteins. We find that, although the critical receptor-interacting C-terminal α5-helices on Gαi and Gαs interact similarly with ß1-AR, the overall interacting modes between ß1-AR and G proteins vary substantially. Functional studies reveal the importance of the differing interactions and provide evidence that the activation efficacy of G proteins by ß1-AR is determined by the entire three-dimensional interaction surface, including intracellular loops 2 and 4 (ICL2 and ICL4).


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Estructura Terciaria de Proteína/fisiología , Receptores Adrenérgicos beta 1/metabolismo , Animales , Gasto Cardíaco/genética , Gasto Cardíaco/fisiología , Línea Celular , Microscopía por Crioelectrón , AMP Cíclico/metabolismo , Activación Enzimática/fisiología , Células HEK293 , Cardiopatías/patología , Humanos , Hipertensión/patología , Isoproterenol/química , Estructura Secundaria de Proteína/fisiología , Células Sf9 , Transducción de Señal/fisiología
16.
Mol Cell ; 80(1): 59-71.e4, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818430

RESUMEN

Cardiac disease remains the leading cause of morbidity and mortality worldwide. The ß1-adrenergic receptor (ß1-AR) is a major regulator of cardiac functions and is downregulated in the majority of heart failure cases. A key physiological process is the activation of heterotrimeric G-protein Gs by ß1-ARs, leading to increased heart rate and contractility. Here, we use cryo-electron microscopy and functional studies to investigate the molecular mechanism by which ß1-AR activates Gs. We find that the tilting of α5-helix breaks a hydrogen bond between the sidechain of His373 in the C-terminal α5-helix and the backbone carbonyl of Arg38 in the N-terminal αN-helix of Gαs. Together with the disruption of another interacting network involving Gln59 in the α1-helix, Ala352 in the ß6-α5 loop, and Thr355 in the α5-helix, these conformational changes might lead to the deformation of the GDP-binding pocket. Our data provide molecular insights into the activation of G-proteins by G-protein-coupled receptors.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Isoproterenol/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Animales , Sitios de Unión , Bovinos , Línea Celular , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
17.
Elife ; 92020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32749217

RESUMEN

The chloride-proton exchanger CLC-7 plays critical roles in lysosomal homeostasis and bone regeneration and its mutation can lead to osteopetrosis, lysosomal storage disease and neurological disorders. In lysosomes and the ruffled border of osteoclasts, CLC-7 requires a ß-subunit, OSTM1, for stability and activity. Here, we present electron cryomicroscopy structures of CLC-7 in occluded states by itself and in complex with OSTM1, determined at resolutions up to 2.8 Å. In the complex, the luminal surface of CLC-7 is entirely covered by a dimer of the heavily glycosylated and disulfide-bonded OSTM1, which serves to protect CLC-7 from the degradative environment of the lysosomal lumen. OSTM1 binding does not induce large-scale rearrangements of CLC-7, but does have minor effects on the conformation of the ion-conduction pathway, potentially contributing to its regulatory role. These studies provide insights into the role of OSTM1 and serve as a foundation for understanding the mechanisms of CLC-7 regulation.


Inside the cells of mammals, acidic compartments called lysosomes are responsible for breaking down large molecules and worn-out cells parts so their components can be used again. Similar to lysosomes, specialized cells called osteoclasts require an acidic environment to degrade tissues in the bone. Both osteoclasts and lysosomes rely on a two-component protein complex to help them digest molecules. Mutations in the genes for both proteins are directly linked to human diseases including neurodegeneration and osteopetrosis ­ a disease characterized by dense and brittle bones. For the main protein in this complex, called CLC-7, to remain stable and perform its roles, it requires an accessory subunit known as OSTM1. CLC-7 is a transporter that funnels electrically charged particles into and out of the lysosome, which helps to maintain the environment inside the lysosome compartment. However, due to the tight partnership between CLC-7 and OTSM1, how they influence each other is poorly understood. To determine the roles of CLC-7 and OSTM1, Schrecker et al. looked at the structure of the complex using a technique called single particle electron microscopy, which allows proteins to be visualized almost down to the individual atom. The analysis revealed that OSTM1 covers almost the entire inside surface of CLC-7, protecting it from the acidic environment inside the lysosome and contributing to its stability. When the two subunits are bound together, OSTM1 also slightly changes the structure of the pore formed by CLC-7, suggesting that OSTM1 may regulate CLC-7 activity. Schrecker et al. have laid the foundation for understanding more about the activity and regulation of CLC-7 and OSTM1 in lysosomes and osteoclasts. The structures described also help explain previous findings, including why OSTM1 is important for the stability of CLC-7.


Asunto(s)
Canales de Cloruro , Lisosomas/metabolismo , Proteínas de la Membrana , Ubiquitina-Proteína Ligasas , Animales , Pollos , Canales de Cloruro/química , Canales de Cloruro/ultraestructura , Microscopía por Crioelectrón , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Simulación de Dinámica Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/ultraestructura
18.
Elife ; 92020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32228865

RESUMEN

Transmembrane protein 175 (TMEM175) is a K+-selective ion channel expressed in lysosomal membranes, where it establishes a membrane potential essential for lysosomal function and its dysregulation is associated with the development of Parkinson's Disease. TMEM175 is evolutionarily distinct from all known channels, predicting novel ion-selectivity and gating mechanisms. Here we present cryo-EM structures of human TMEM175 in open and closed conformations, enabled by resolutions up to 2.6 Å. Human TMEM175 adopts a homodimeric architecture with a central ion-conduction pore lined by the side chains of the pore-lining helices. Conserved isoleucine residues in the center of the pore serve as the gate in the closed conformation. In the widened channel in the open conformation, these same residues establish a constriction essential for K+ selectivity. These studies reveal the mechanisms of permeation, selectivity and gating and lay the groundwork for understanding the role of TMEM175 in lysosomal function.


Asunto(s)
Activación del Canal Iónico , Lisosomas/metabolismo , Canales de Potasio/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Humanos , Potenciales de la Membrana , Canales de Potasio/ultraestructura , Conformación Proteica
19.
Elife ; 82019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30775971

RESUMEN

Hypoosmotic conditions activate volume-regulated anion channels in vertebrate cells. These channels are formed by leucine-rich repeat-containing protein 8 (LRRC8) family members and contain LRRC8A in homo- or hetero-hexameric assemblies. Here, we present single-particle cryo-electron microscopy structures of Mus musculus LRRC8A in complex with the inhibitor DCPIB reconstituted in lipid nanodiscs. DCPIB plugs the channel like a cork in a bottle - binding in the extracellular selectivity filter and sterically occluding ion conduction. Constricted and expanded structures reveal coupled dilation of cytoplasmic LRRs and the channel pore, suggesting a mechanism for channel gating by internal stimuli. Conformational and symmetry differences between LRRC8A structures determined in detergent micelles and lipid bilayers related to reorganization of intersubunit lipid binding sites demonstrate a critical role for the membrane in determining channel structure. These results provide insight into LRRC8 gating and inhibition and the role of lipids in the structure of an ionic-strength sensing ion channel.


Asunto(s)
Lípidos/química , Proteínas de la Membrana/ultraestructura , Conformación Proteica , Animales , Aniones/química , Tamaño de la Célula , Microscopía por Crioelectrón , Ciclopentanos/química , Citoplasma/química , Humanos , Indanos/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Ratones , Nanoestructuras/química , Concentración Osmolar
20.
Proc Natl Acad Sci U S A ; 115(41): 10333-10338, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30181288

RESUMEN

Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated, cation-selective channel, is a prokaryotic homolog of the pentameric Cys-loop receptor ligand-gated ion channel family. Despite large changes in ion conductance, small conformational changes were detected in X-ray structures of detergent-solubilized GLIC at pH 4 (active/desensitized state) and pH 7 (closed state). Here, we used high-speed atomic force microscopy (HS-AFM) combined with a buffer exchange system to perform structural titration experiments to visualize GLIC gating at the single-molecule level under native conditions. Reference-free 2D classification revealed channels in multiple conformational states during pH gating. We find changes of protein-protein interactions so far elusive and conformational dynamics much larger than previously assumed. Asymmetric pentamers populate early stages of activation, which provides evidence for an intermediate preactivated state.


Asunto(s)
Proteínas Bacterianas/química , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/química , Microscopía de Fuerza Atómica/métodos , Proteínas Bacterianas/metabolismo , Cianobacterias/química , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...