Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 933: 173108, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729376

RESUMEN

Wastewater-based surveillance (WBS) has shown to be an effective tool in monitoring the spread of SARS-CoV-2 and has helped guide public health actions. Consequently, WBS has expanded to now include the monitoring of mpox virus (MPXV) to contribute to its mitigation efforts. In this study, we demonstrate a unique sample processing and a molecular diagnostic strategy for MPXV detection that can inform on the epidemiological situation of mpox outbreaks through WBS. We conducted WBS for MPXV in 22 Canadian wastewater treatment plants (WWTPs) for 14 weeks. Three MPXV qPCR assays were assessed in this study for the detection of MPXV which include the G2R assays (G2R_WA and G2R_G) developed by the Centers for Disease Control and Prevention (CDC) in 2010, and an in-house-developed assay that we have termed G2R_NML. The G2R_NML assay was designed using reference genomes from the 2022 MPXV outbreak and provides a larger qPCR amplicon size to facilitate Sanger sequencing. Results show that all three assays have similar limits of detection and are able to detect the presence of MPXV in wastewater. The G2R_NML assay produced a significantly greater number of Sanger sequence-confirmed MPXV results compared to the CDC G2R assays. Detection of MPXV was possible where provincial surveillance indicated overall low caseloads, and in some sites forewarning of up to several weeks was observed. Overall, this study proposes that WBS of MPXV provides additional information to help fill knowledge gaps in clinical case-surveillance and is potentially an essential component to the management of mpox.

2.
J Infect Dis ; 229(Supplement_2): S305-S312, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38035826

RESUMEN

BACKGROUND: With many global jurisdictions, Toronto, Canada, experienced an mpox outbreak in spring/summer 2022. Cases declined following implementation of a large vaccination campaign. A surge in early 2023 led to speculation that asymptomatic and/or undetected local transmission was occurring in the city. METHODS: Mpox cases and positive laboratory results are reported to Toronto Public Health. Epidemic curves and descriptive risk factor summaries for the 2022 and 2023 outbreaks were generated. First- and second-dose vaccination was monitored. Mpox virus wastewater surveillance and whole genome sequencing were conducted to generate hypotheses about the source of the 2023 resurgence. RESULTS: An overall 515 cases were reported in spring/summer 2022 and 17 in the 2022-2023 resurgence. Wastewater data correlated with the timing of cases. Whole genome sequencing showed that 2022-2023 cases were distinct from 2022 cases and closer to sequences from another country, suggesting a new importation as a source. At the start of the resurgence, approximately 16% of first-dose vaccine recipients had completed their second dose. CONCLUSIONS: This investigation demonstrates the importance of ongoing surveillance and preparedness for mpox outbreaks. Undetected local transmission was not a likely source of the 2022-2023 resurgence. Ongoing preexposure vaccine promotion remains important to mitigate disease burden.


Asunto(s)
Mpox , Vacunas , Humanos , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Brotes de Enfermedades , Canadá
3.
Front Endocrinol (Lausanne) ; 13: 934706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36303872

RESUMEN

Objective: Rates of type 2 diabetes (T2D) among adolescents are on the rise. Epigenetic changes could be associated with the metabolic alterations in adolescents with T2D. Methods: We performed a cross sectional integrated analysis of DNA methylation data from peripheral blood mononuclear cells with serum metabolomic data from First Nation adolescents with T2D and controls participating in the Improving Renal Complications in Adolescents with type 2 diabetes through Research (iCARE) cohort study, to explore the molecular changes in adolescents with T2D. Results: Our analysis showed that 43 serum metabolites and 36 differentially methylated regions (DMR) were associated with T2D. Several DMRs were located near the transcriptional start site of genes with established roles in metabolic disease and associated with altered serum metabolites (e.g. glucose, leucine, and gamma-glutamylisoleucine). These included the free fatty acid receptor-1 (FFAR1), upstream transcription factor-2 (USF2), and tumor necrosis factor-related protein-9 (C1QTNF9), among others. Conclusions: We identified DMRs and metabolites that merit further investigation to determine their significance in controlling gene expression and metabolism which could define T2D risk in adolescents.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Adolescente , Diabetes Mellitus Tipo 2/metabolismo , Metilación de ADN , Estudios Transversales , Estudios de Cohortes , Leucocitos Mononucleares/patología , Metaboloma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...