Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 747661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745181

RESUMEN

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

2.
Front Plant Sci ; 11: 539, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457780

RESUMEN

With the current advances in the development of low-cost high-density array-based DNA marker technologies, cereal breeding programs are increasingly relying on genomic selection as a tool to accelerate the rate of genetic gain in seed quality traits. Different sources of genetic information are being explored, with the most prevalent being combined additive information from marker and pedigree-based data, and their interaction with the environment. In this, there has been mixed evidence on the performance of use of these data. This study undertook an extensive analysis of 907 elite winter barley (Hordeum vulgare L.) lines across multiple environments from two breeding companies. Six genomic prediction models were evaluated to demonstrate the effect of using pedigree and marker information individually and in combination, as well their interactions with the environment. Each model was evaluated using three cross-validation schemes that allows the prediction of newly developed lines (lines that have not been evaluated in any environment), prediction of new or unobserved years, and prediction of newly developed lines in unobserved years. The results showed that the best prediction model depends on the cross-validation scheme employed. In predicting newly developed lines in known environments, marker information had no advantage to pedigree information. Predictions in this scenario also benefited from including genotype-by-environment interaction in the models. However, when predicting lines and years not observed previously, marker information was superior to pedigree data. Nonetheless, such scenarios did not benefit from the addition of genotype-by-environment interaction. A combination of pedigree-based and marker-based information produced a similar or only marginal improvement in prediction ability. It was also discovered that combining populations from the different breeding programs to increase training population size had no advantage in prediction.

3.
Front Plant Sci ; 10: 542, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130971

RESUMEN

The northwards expansion of barley production requires adaptation to longer days, lower temperatures and stronger winds during the growing season. We have screened 169 lines of the current barley breeding gene pool in the Nordic region with regards to heading, maturity, height, and lodging under different environmental conditions in nineteen field trials over 3 years at eight locations in northern and central Europe. Through a genome-wide association scan we have linked phenotypic differences observed in multi-environment field trials (MET) to single nucleotide polymorphisms (SNP). We have identified an allele combination, only occurring among a few Icelandic lines, that affects heat sum to maturity and requires 214 growing degree days (GDD) less heat sum to maturity than the most common allele combination in the Nordic spring barley gene pool. This allele combination is beneficial in a cold environment, where autumn frost can destroy a late maturing harvest. Despite decades of intense breeding efforts relying heavily on the same germplasm, our results show that there still exists considerable variation within the current breeding gene pool and we identify ideal allele combinations for regional adaptation, which can facilitate the expansion of cereal cultivation even further northwards.

4.
J Agric Food Chem ; 66(16): 4044-4050, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29575893

RESUMEN

Grain-batch variation in xylanase-inhibitor levels may account for variations in the efficacy of feed xylanase supplementation. This would make inhibition an important quality parameter in the routine analysis of feedstuffs. Two analytical procedures for testing feedstuffs against specific xylanases were researched: the high-throughput viscosity-pressure assay (ViPr) and the extraction-free remazol-brilliant-blue-beechwood-xylan (RBBX) assay. Thirty-two wheat cultivars were analyzed for inhibition of a commercial xylanase, Ronozyme WX. Four cultivars were selected for a feeding experiment in which the growth of 1440 broilers from ages 7-33 days was monitored. The treatments resulted up to 7 % difference (day 14) in broiler weight . The cultivar choice had an effect throughout the experiment ( p < 0.05). The performance ranking of the treatments corresponded better to xylanase inhibition than to crude-protein content or nonstarch-polysaccharide content. Wheat-grain xylanase-inhibitor content is therefore a highly relevant quality parameter when broiler diets are supplemented with feed xylanase.


Asunto(s)
Pollos/metabolismo , Endo-1,4-beta Xilanasas/antagonistas & inhibidores , Inhibidores Enzimáticos/análisis , Triticum/metabolismo , Alimentación Animal/análisis , Animales , Pollos/crecimiento & desarrollo , Endo-1,4-beta Xilanasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Triticum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA