Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ESMO Open ; 7(6): 100637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36423362

RESUMEN

BACKGROUND: COGNITION (Comprehensive assessment of clinical features, genomics and further molecular markers to identify patients with early breast cancer for enrolment on marker driven trials) is a diagnostic registry trial that employs genomic and transcriptomic profiling to identify biomarkers in patients with early breast cancer with a high risk for relapse after standard neoadjuvant chemotherapy (NACT) to guide genomics-driven targeted post-neoadjuvant therapy. PATIENTS AND METHODS: At National Center for Tumor Diseases Heidelberg patients were biopsied before starting NACT, and for patients with residual tumors after NACT additional biopsy material was collected. Whole-genome/exome and transcriptome sequencing were applied on tumor and corresponding blood samples. RESULTS: In the pilot phase 255 patients were enrolled, among which 213 were assessable: thereof 48.8% were identified to be at a high risk for relapse following NACT; 86.4% of 81 patients discussed in the molecular tumor board were eligible for a targeted therapy within the interventional multiarm phase II trial COGNITION-GUIDE (Genomics-guided targeted post neoadjuvant therapy in patients with early breast cancer) starting enrolment in Q4/2022. An in-depth longitudinal analysis at baseline and in residual tumor tissue of 16 patients revealed some cases with clonal evolution but largely stable genetic alterations, suggesting restricted selective pressure of broad-acting cytotoxic neoadjuvant chemotherapies. CONCLUSIONS: While most precision oncology initiatives focus on metastatic disease, the presented concept offers the opportunity to empower novel therapy options for patients with high-risk early breast cancer in the post-neoadjuvant setting within a biomarker-driven trial and provides the basis to test the value of precision oncology in a curative setting with the overarching goal to increase cure rates.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/tratamiento farmacológico , Medicina de Precisión , Estudios Prospectivos
2.
Oncogene ; 36(29): 4124-4134, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28319069

RESUMEN

Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/metabolismo , Transaminasas/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Resistencia a Antineoplásicos , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Tamoxifeno/farmacología , Transaminasas/antagonistas & inhibidores , Transaminasas/biosíntesis , Transaminasas/metabolismo , Regulación hacia Arriba
3.
Leukemia ; 31(10): 2048-2056, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28196983

RESUMEN

Recent developments in sequencing technologies led to the discovery of a novel form of genomic instability, termed chromothripsis. This catastrophic genomic event, involved in tumorigenesis, is characterized by tens to hundreds of simultaneously acquired locally clustered rearrangements on one chromosome. We hypothesized that leukemias developing in individuals with Ataxia Telangiectasia, who are born with two mutated copies of the ATM gene, an essential guardian of genome stability, would show a higher prevalence of chromothripsis due to the associated defect in DNA double-strand break repair. Using whole-genome sequencing, fluorescence in situ hybridization and RNA sequencing, we characterized the genomic landscape of Acute Lymphoblastic Leukemia (ALL) arising in patients with Ataxia Telangiectasia. We detected a high frequency of chromothriptic events in these tumors, specifically on acrocentric chromosomes, as compared with tumors from individuals with other types of DNA repair syndromes (27 cases total, 10 with Ataxia Telangiectasia). Our data suggest that the genomic landscape of Ataxia Telangiectasia ALL is clearly distinct from that of sporadic ALL. Mechanistically, short telomeres and compromised DNA damage response in cells of Ataxia Telangiectasia patients may be linked with frequent chromothripsis. Furthermore, we show that ATM loss is associated with increased chromothripsis prevalence in additional tumor entities.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Ataxia Telangiectasia/genética , Proteínas de Neoplasias/fisiología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Ataxia Telangiectasia/complicaciones , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Niño , Preescolar , Cromosomas Humanos/ultraestructura , Cromotripsis , Reparación del ADN/genética , ADN de Neoplasias/genética , Femenino , Genoma Humano , Inestabilidad Genómica , Humanos , Hibridación Fluorescente in Situ , Masculino , Mutación , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , ARN Neoplásico/genética , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Acortamiento del Telómero/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA