Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 7: 78, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32266272

RESUMEN

Background: Uremic vascular calcification (UVC) is reminiscent of osteogenesis and apoptosis in vascular smooth muscle cell (VSMC). We aimed to identify how circulating procalcific particles dramatically leak into VSMC layer in human tissue models of vascular rings. Methods: According to baseline estimated glomerular filtration rate (eGFR), patients following lower extremity amputation were divided into three groups: normal renal function (eGFR ≧ 60 ml/min), mild-to-moderate (15 ml/min < eGFR ≧ 60 ml/min) and severe chronic kidney disease (CKD) (eGFR ≦ 15 ml/min). Arterial specimens with immunohistochemistry stain were quantitatively analyzed for UVC, internal elastic lamina (EL) disruption, α-SMA, osteogenesis, apoptosis, and oxidative injury. Correlations among UVC severity, eGFR, EL disruption, osteogenesis, and oxidative injury were investigated. Results: CKD arteries were associated with eGFR-dependent EL disruption corresponding to UVC severity. CKD arteries exhibited lower α-SMA, higher expressions of caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), indicative of contractile VSMC loss, and apoptosis. Enhanced expressions of alkaline phosphatase and Runx2 were presented in VSMCs of CKD arteries, indicative of osteogenic differentiation. Above eGFR-dependent UVC and EL disruption correlated expressions of 8-hydroxy-2'-deoxyguanosine (8-OHdG), indicating oxidative EL injury promoted procalcific processes. Conclusions: Circulating uremic milieu triggers vascular oxidative stress, leading to progressive internal EL disruption as a key event in disabling VSMC defense mechanisms and catastrophic mineral ion influx into VSMC layer. Oxidative EL injury begins in early CKD, corresponding with active VSMC re-programming, apoptosis, and ultimately irremediable UVC. In light of this, therapeutic strategies targeting oxidative tissue injury might be of vital importance to hinder the progression of UVC related cardiovascular events.

2.
Int J Mol Sci ; 20(18)2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31500176

RESUMEN

Obesity is associated with metabolic endotoxemia, reactive oxygen species (ROS), chronic inflammation, and obese kidney fibrosis. Although the fat-intestine-kidney axis has been documented, the pathomechanism and therapeutic targets of obese kidney fibrosis remain unelucidated. To mimic obese humans with metabolic endotoxemia, high-fat-diet-fed mice (HF group) were injected with lipopolysaccharide (LPS) to yield the obese kidney fibrosis-metabolic endotoxemia mouse model (HL group). Therapeutic effects of ROS, cytosolic phospholipases A2 (cPLA2) and cyclooxygenase-2 (COX-2) inhibitors were analyzed with a quantitative comparison of immunohistochemistry stains and morphometric approach in the tubulointerstitium of different groups. Compared with basal and HF groups, the HL group exhibited the most prominent obese kidney fibrosis, tubular epithelial lipid vacuoles, and lymphocyte infiltration in the tubulointerstitium. Furthermore, inhibitors of nonspecific ROS, cPLA2 and COX-2 ameliorated the above renal damages. Notably, the ROS-inhibitor-treated group ameliorated not only oxidative injury but also the expression of cPLA2 and COX-2, indicating that ROS functions as the upstream signaling molecule in the inflammatory cascade of obese kidney fibrosis. ROS acts as a key messenger in the signaling transduction of obese kidney fibrosis, activating downstream cPLA2 and COX-2. The given antioxidant treatment ameliorates obese kidney fibrosis resulting from a combined high-fat diet and LPS-ROS could serve as a potential therapeutic target of obese kidney fibrosis with metabolic endotoxemia.


Asunto(s)
Ciclooxigenasa 2/genética , Endotoxemia/complicaciones , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Obesidad/complicaciones , Fosfolipasas A2 Citosólicas/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Biomarcadores , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Metabolismo de los Lípidos , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Terapia Molecular Dirigida , Estrés Oxidativo , Fosfolipasas A2 Citosólicas/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Clin Med ; 7(11)2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428612

RESUMEN

BACKGROUND: Interactions and early warning effects of non-hepatic alkaline phosphatase (NHALP) and high-sensitivity C-reactive protein (hs-CRP) on the progression of vertebral fractures (VFs) in patients with rheumatoid arthritis (RA) remain unclear. We aim to explore whether serum concentrations of NHALP and hs-CRP could serve as a promising dual biomarker for prognostic assessment of VF progression. METHODS: Unadjusted and adjusted hazard ratios (aHRs) of VF progression were calculated for different categories of serum NHALP and hs-CRP using the Cox regression model in RA patients. The modification effect between serum NHALP and hs-CRP on VF progression was determined using an interaction product term. RESULTS: During 4489 person-years of follow-up, higher NHALP (>125 U/L) and hs-CRP (>3.0 mg/L) were robustly associated with incremental risks of VF progression in RA patients (aHR: 2.2 (95% confidence intervals (CIs): 1.2⁻3.9) and 2.0 (95% CI: 1.3⁻3.3) compared to the lowest HR category, respectively). The interaction between NHALP and hs-CRP on VF progression was statistically significant (p < 0.05). In the stratified analysis, patients with combined highest NHALP and hs-CRP had the greatest risk of VF progression (aHR: 4.9 (95% CI: 2.5⁻9.6)) compared to the lowest HR group (NHALP < 90 U/L and hs-CRP < 1 mg/L). CONCLUSIONS: In light of underdiagnoses of VFs and misleading diagnosis by single test, NHALP and hs-CRP could serve as compensatory biomarkers to predict subclinical VF progression in RA patients.

4.
Proc Natl Acad Sci U S A ; 115(35): E8236-E8245, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104385

RESUMEN

During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5-mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5-mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex ß subunit gene, apb-3 Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3 Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3-mediated trafficking and degradation of UNC-5 receptors during axon guidance.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sumoilación/fisiología , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/fisiología , Factores de Transcripción/genética
5.
Microbes Infect ; 10(3): 293-301, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18316220

RESUMEN

To survive macrophage killing is critical in the pathogenesis of viridians streptococci-induced infective endocarditis (IE). Streptococcus mutans, an opportunistic IE pathogen, generally does not survive well phagocytic killing in murine macrophage RAW 264.7 cells. A putative two-component system (TCS), ScnR/ScnK from S. mutans, was investigated to elucidate the mechanisms underlying bacteria-cellular interaction in this study. Both the wild-type and mutant strains were phagocytosed by RAW 264.7 cells at a comparable rate and an increased intracellular susceptibility during a 5 h incubation period was observed with the scnRK-null mutants. The amount of reactive oxygen species (ROS) in activated macrophages was reduced significantly after ingesting wild-type, but not scnRK-null mutant strains, suggesting that increased macrophage killing of these mutants is due to the impaired ability of S. mutans to counteract ROS. Additionally, both scnR- or scnRK-null mutants were more susceptible to hydrogen peroxide. Interestingly, scnRK expression was unaffected by hydrogen peroxide. These experimental results indicate that scnRK is important in counteracting oxidative stress in S. mutans, and decreased susceptibility to phagocytic killing is at least partly attributable to inhibition of intracellular ROS formation.


Asunto(s)
Proteínas Bacterianas/fisiología , Peróxido de Hidrógeno/farmacología , Infecciones Estreptocócicas/inmunología , Streptococcus mutans/química , Streptococcus mutans/efectos de los fármacos , Animales , Línea Celular , Farmacorresistencia Bacteriana , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Mutación , Fagocitosis , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Streptococcus mutans/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...