Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 13(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34452122

RESUMEN

Dermatophytosis is a fungal infection of skin, nails and hair. Treatments can be long and infections are often recurrent, and novel treatments are desirable. Here we tested the use of polymeric films that can be sprayed on the skin for the prevention and treatment of dermatophytosis. The two polymers selected were ABIL T Quat 60 and Eudragit E100, which were tested ex vivo using a porcine skin model, and in vitro using microbiological and microscopy techniques. Acceptability of the polymeric films was tested on the skin of healthy volunteers. The results showed that ABIL and Eudragit films prevented and treated fungal skin infections. Whilst polymer films may provide a physical barrier that prevents fungal colonization, it was shown that both polymers are active antifungals ex vivo and in vitro and have intrinsic antifungal activity. For ABIL, we also established that this polymer binds essential nutrients such as metal ions and sugars, thereby restricting the growth of fungi. When applied to healthy subjects' skin, the polymeric films neither modified the skin color nor increased trans-epidermal water loss, suggesting a low potential for skin irritation, and the approach was generally found to be acceptable for use by the volunteers. In conclusion, we developed a novel strategy for the potential prevention and treatment of dermatophytosis.

2.
Mycopathologia ; 185(2): 233-243, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32108288

RESUMEN

Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections.


Asunto(s)
Piel/microbiología , Tiña/microbiología , Técnicas de Cultivo de Tejidos/métodos , Trichophyton/crecimiento & desarrollo , Animales , Antifúngicos/farmacología , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , Modelos Animales de Enfermedad , Epidermis/microbiología , Epidermis/patología , Humanos , Microscopía Electrónica de Rastreo , Piel/patología , Esporas Fúngicas/crecimiento & desarrollo , Porcinos , Tiña/tratamiento farmacológico
3.
J Microbiol Methods ; 165: 105722, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31520656

RESUMEN

Dermatophytosis is one of the most common superficial fungal infections, which is mainly caused by filamentous fungi such as Trichophyton species. A challenging aspect in dermatophyte research is the lack of a straightforward method to measure the rate of growth, in particular when growing dermatophytes in small volumes such as in microtitre plates. However, one characteristic of dermatophytes is their ability to produce compounds such as ammonia that make the growth medium more alkaline. The objective of this study was to test whether the change in pH in a liquid medium, colourimetrically established using the indicator phenol red, was linearly and directly proportional to the growth rate for Trichophyton rubrum and Trichophyton interdigitale. The changes in the colour determined by the phenol-red based assay showed a good correlation with the amount of fungal biomass over an incubation period of 24-120 h. The functionality of the phenol red assay was also validated in experiments on the growth of T. rubrum in the presence of antifungals. The changes in colour showed a clear dose-response relationship compounds and enabled determination of the minimum inhibitory concentration. The phenol red assay is thus a simple and straightforward assay to monitor the rate of growth of Trichophyton spp. and test antifungal activity.


Asunto(s)
Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana , Tiña/microbiología , Trichophyton/efectos de los fármacos , Trichophyton/crecimiento & desarrollo , Medios de Cultivo/química , Humanos , Fenolsulfonftaleína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...