Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadk5386, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536927

RESUMEN

While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.


Asunto(s)
Carcinoma Ductal Pancreático , Retrovirus Endógenos , Neoplasias Pancreáticas , Humanos , Retrovirus Endógenos/genética , Transducción de Señal , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo
2.
Sci Adv ; 10(11): eadd9342, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478609

RESUMEN

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternating clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fitness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients' survival.


Asunto(s)
Ecosistema , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Perfilación de la Expresión Génica , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186844

RESUMEN

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Rasgo Drepanocítico , Animales , Humanos , Ratones , Carcinoma de Células Renales/patología , Hipoxia/genética , Hipoxia/metabolismo , Riñón/metabolismo , Neoplasias Renales/patología , Rasgo Drepanocítico/genética , Rasgo Drepanocítico/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
4.
Opt Lett ; 48(7): 1746-1749, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37221756

RESUMEN

Two-dimensional fractal topologies featuring (scaling) self-similarity, dense set of Bragg (diffraction) peaks, and inherent rotation symmetry, which are not achievable with regular grid-matrix geometries, exhibit optical robustness against structural damage and noise immunity of optical transmission paths. In this work, we numerically and experimentally demonstrate phase holograms using fractal plane-divisions. By taking advantage of the symmetries of the fractal topology, we propose numerical algorithms to design the fractal holograms. This algorithm solves the inapplicability of the conventional iterative Fourier transform algorithm (IFTA) method and enables efficient optimizations of millions of adjustable parameters in the optical element. Experimental samples show that the alias and replica noises in the image plane of fractal holograms are clearly suppressed, facilitating applications for high-accuracy and compact requirements.

5.
Nat Commun ; 14(1): 2194, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069167

RESUMEN

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Éteres Fosfolípidos/metabolismo , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Homeostasis
6.
Opt Express ; 29(23): 37211-37224, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808798

RESUMEN

Diffractive optical elements (DOEs) are widely applied as compact solutions for desired light manipulations via wavefront shaping. Recent advanced chip applications further require their feature sizes to move down to the subwavelength, which inevitably brings forth vectorial effects of optical fields and makes the typical scalar-based theory invalid. However, simulating and optimizing their vectorial fields, which are associated with billions of adjustable parameters in the optical element, are difficult to do, because of the issues of numerical stability and the highly-demanding computational cost. To address this problem, this research proposes an applicable algorithm by means of a wave-vector (k) series approximation of vectorial optical fields. On the basis of the semi-analytical rigorous coupled wave analysis (RCWA), an adequate selection scheme on k-series enables computationally efficient yet still predictive calculations for DOEs. The performance estimations for exemplary designs by the finite difference time domain (FDTD) method show that the predicted intensity profiles by the proposed algorithm agree with the target by just a fractional error. Together with optimizing the geometrical degrees of freedom (e.g., DOE depth h) as compensation for errors from the truncation of k-series, the algorithm demonstrates its outperformance by one or two orders of magnitude in accuracy versus the scalar-based model, and demands only a reasonable computational resource.

7.
Science ; 373(6561): eabj0486, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34529467

RESUMEN

Inflammation is a major risk factor for pancreatic ductal adenocarcinoma (PDAC). When occurring in the context of pancreatitis, KRAS mutations accelerate tumor development in mouse models. We report that long after its complete resolution, a transient inflammatory event primes pancreatic epithelial cells to subsequent transformation by oncogenic KRAS. Upon recovery from acute inflammation, pancreatic epithelial cells display an enduring adaptive response associated with sustained transcriptional and epigenetic reprogramming. Such adaptation enables the reactivation of acinar-to-ductal metaplasia (ADM) upon subsequent inflammatory events, thereby limiting tissue damage through a rapid decrease of zymogen production. We propose that because activating mutations of KRAS maintain an irreversible ADM, they may be beneficial and under strong positive selection in the context of recurrent pancreatitis.


Asunto(s)
Células Acinares/patología , Carcinogénesis , Carcinoma Ductal Pancreático/patología , Genes ras , Páncreas/patología , Pancreatitis/fisiopatología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/fisiopatología , Transformación Celular Neoplásica , Células Cultivadas , Reprogramación Celular , Cromatina/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Precursores Enzimáticos/metabolismo , Epigénesis Genética , Células Epiteliales/patología , Células Epiteliales/fisiología , Femenino , Sistema de Señalización de MAP Quinasas , Masculino , Metaplasia , Ratones , Mutación , Páncreas/metabolismo , Pancreatitis/genética , Pancreatitis/inmunología , Esferoides Celulares , Transcriptoma
8.
Front Cell Dev Biol ; 9: 642625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996800

RESUMEN

Activation of the epidermal growth factor receptor (EGFR) is crucial for development, tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with numerous diseases. EGFR ubiquitination and endosomal trafficking are key events that regulate the termination of EGFR signaling, but their underlying mechanisms remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation and prolonged downstream signaling. We further demonstrate that ZNRF1 and Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore, loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1) infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as a novel regulator of EGFR signaling, which together with CBL controls ligand-induced EGFR ubiquitination and lysosomal trafficking.

9.
J Phys Condens Matter ; 32(7): 075901, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-31648209

RESUMEN

Under the wide-band limit approximation for electrodes, this research proposes analytical time-dependent non-equilibrium Green's function (TD-NEGF) formulae to investigate dynamical functionalities of quasi-one-dimensional quantum devices, especially for (microwave) photon-assisted transports. Together with a multiscale approach by lumped element model, we also study the effects of transiently-transferring charges to reflect the non-conservation of charges in open quantum systems, and implement numerical calculations in hetero-junction systems composed of functional quantum devices and electrode-contacts (to the environment). The results show that (i) the current calculation by the analytical algorithms, versus those by conventional numerical integrals, presents superior numerical stability on a large-time scale, (ii) the correction of charge transfer effects can better clarify non-physical transport issues, e.g. the blocking of AC signaling under the assumption of conventional constant hamiltonian, (iii) the current in the long-time limit validly converges to the steady value obtained by standard time-independent density functional calculations, and (iv) the occurrence of the photon-assisted transport is well-identified.

10.
Nat Commun ; 10(1): 3144, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316073

RESUMEN

Capitalizing on the inherent multiplexing capability of AsCpf1, we developed a multiplexed, high-throughput screening strategy that minimizes library size without sacrificing gene targeting efficiency. We demonstrated that AsCpf1 can be used for functional genomics screenings and that an AsCpf1-based multiplexed library performs similarly as compared to currently available monocistronic CRISPR/Cas9 libraries, with only one vector required for each gene. We construct the smallest whole-genome CRISPR knock-out library, Mini-human, for the human genome (n = 17,032 constructs targeting 16,977 protein-coding genes), which performs favorably compared to conventional Cas9 libraries.


Asunto(s)
Sistemas CRISPR-Cas/genética , Biblioteca de Genes , Proteína 9 Asociada a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Humanos , ARN Guía de Kinetoplastida/química
11.
Nature ; 568(7752): 410-414, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918400

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Pinocitosis , Sindecano-1/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
12.
Cell Rep ; 26(6): 1518-1532.e9, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726735

RESUMEN

Adaptive drug-resistance mechanisms allow human tumors to evade treatment through selection and expansion of treatment-resistant clones. Here, studying clonal evolution of tumor cells derived from human pancreatic tumors, we demonstrate that in vitro cultures and in vivo tumors are maintained by a common set of tumorigenic cells that can be used to establish clonal replica tumors (CRTs), large cohorts of animals bearing human tumors with identical clonal composition. Using CRTs to conduct quantitative assessments of adaptive responses to therapeutics, we uncovered a multitude of functionally heterogeneous subpopulations of cells with differential degrees of drug sensitivity. High-throughput isolation and deep characterization of unique clonal lineages showed genetic and transcriptomic diversity underlying functionally diverse subpopulations. Molecular annotation of gemcitabine-naive clonal lineages with distinct responses to treatment in the context of CRTs generated signatures that can predict the response to chemotherapy, representing a potential biomarker to stratify patients with pancreatic cancer.


Asunto(s)
Resistencia a Antineoplásicos , Heterogeneidad Genética , Neoplasias Pancreáticas/genética , Transcriptoma , Anciano , Animales , Antimetabolitos Antineoplásicos/farmacología , Células Cultivadas , Evolución Clonal , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/patología , Gemcitabina
13.
J Phys Condens Matter ; 31(5): 055702, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30524053

RESUMEN

Electromagnetic waves propagating in open Cooper-pair boxes (CPBs) system is studied by using Maxwell-Bloch equations and Lindblad master equation. The results demonstrate an ensemble of CPBs as highly non-linear meta-material for electromagnetic waves. Incorporating the CPBs in a ring resonator or a Fabry-Perot cavity, one finds that: (1) With weak environmental couplings and CPBs in superconducting phase dominant regime, the non-linearity is enhanced and the system exhibits regular optical hysteresis. (2) With finite environmental couplings and CPBs in charge dominant regime, the Josephson effect and environmental effect can constructively interplay to produce a gain. In the later case, the electromagnetic field would be amplified by the CPB medium, indicating energy conversion from the environment to coherent fields mediated by CPBs.

14.
Biosens Bioelectron ; 116: 51-59, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29859397

RESUMEN

The concept of rapid detection of circulating tumor cells (CTCs) has always been the focal point of modern and future medicine. However, the dispersity and rarity of CTCs in the bloodstream makes it hard to detect metastasis. Herein, our newly designed needle-like cytosensor demonstrates that the capture and analysis of CTCs are a much less laborious process and have more potential than ever. Our aim is to detect and capture CTCs directly in the bloodstream without altering the genetic information; further benefit of current cytosensor is allows for the whole circulation of blood to run through the cytosensor, giving a much better sensitivity and chance of detecting CTCs. Our functionalized needle-like cytosensor has been modified with 3-aminopropyltriethoxysilane, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide and conjugated streptavidin to allow the binding of the biotinylated-antibody of epithelial cell adhesion molecules, which captures targeted colon cancer CTC. The capability of our needle-like cytosensor to detect CTCs spanned from 102 to 106 cells/mL. Beyond this, the needle-like cytosensor avoids the distortion of the cell information. In addition, we constructed a blood flow simulation that mimics human circulating system about 10 mL/min speed; by using cyclic voltammetry we could detect significant signals from captured cancer CTCs more than 21 cells/mL without delay; the fluorescence dye detection was further performed for data confirmation. The future of biosensors begins with this, by providing early monitoring quality care in cancer therapy.


Asunto(s)
Técnicas Biosensibles , Circulación Sanguínea , Separación Celular/métodos , Células Neoplásicas Circulantes/química , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Biomimética , Línea Celular Tumoral , Neoplasias del Colon/sangre , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/inmunología , Molécula de Adhesión Celular Epitelial/inmunología , Etildimetilaminopropil Carbodiimida/química , Humanos , Indoles/química , Células Neoplásicas Circulantes/inmunología , Propilaminas/química , Sensibilidad y Especificidad , Silanos/química , Estreptavidina/química , Succinimidas/química
15.
Appl Opt ; 57(34): 9958-9962, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30645267

RESUMEN

This work theoretically investigates wide-spectrum and high-resolution diffraction optical elements that are made of stacks of low-resolution binary phase gratings, whereby the two-dimensional grids in different grating layers are arranged with specified displacements. We remodel the common kinoform algorithm for this multi-scale architecture. Numerical computations show that, by increasing the number of stacking layers, the resolution of the far-field image can be improved and also that the optical elements are more insensitive to variations of incident wavelengths at the cost of part accuracy of the image reconstructions. Practical concern focuses on largely increasing the number of grating layers and efficiency of the optical designs in theory and on the manufacture of stacks of ultra-thin grating films.

16.
Microcirculation ; 23(8): 614-620, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27362628

RESUMEN

The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions.


Asunto(s)
Arterias/química , Elastina/ultraestructura , Animales , Arterias/ultraestructura , Tejido Elástico/química , Tejido Elástico/fisiología , Elastina/metabolismo , Elastina/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/fisiología , Humanos , Mecanotransducción Celular , Resistencia Vascular
17.
Phys Rev E ; 93: 042415, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27176337

RESUMEN

On the basis of experimental data and mathematical equations in the literature, we remodel the ionic dynamics of smooth muscle cells (SMCs) as an eigensystem formulation, which is valid for investigating finite variations of variables from the equilibrium such as in common experimental operations. This algorithm provides an alternate viewpoint from frequency-domain analysis and enables one to probe functionalities of SMCs' rhythm by means of a resonance-related mechanism. Numerical results show three types of calcium oscillations of SMCs in mesenteric arterioles: spontaneous calcium oscillation, agonist-dependent calcium oscillation, and agonist-dependent calcium spike. For simple single and double SMCs, we demonstrate properties of synchronization among complex signals related to calcium oscillations, and show different correlation relations between calcium and voltage signals for various synchronization and resonance conditions. For practical cell clusters, our analyses indicate that the rhythm of SMCs could (1) benefit enhancements of signal communications among remote cells, (2) respond to a significant calcium peaking against transient stimulations for triggering globally oscillating modes, and (3) characterize the globally oscillating modes via frog-leap (non-molecular-diffusion) calcium waves across inhomogeneous SMCs.


Asunto(s)
Arterias Mesentéricas/citología , Modelos Biológicos , Miocitos del Músculo Liso/citología , Animales , Arteriolas/citología , Arteriolas/fisiología , Metabolismo Energético , Frecuencia Cardíaca , Modelos Lineales , Arterias Mesentéricas/fisiología , Ratas , Vasoconstricción
18.
Sci Rep ; 5: 16948, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26592553

RESUMEN

Cisplatin-based chemotherapy is the primary treatment for metastatic bladder urothelial carcinoma. However, the response rate is only 40-65%. This study investigated the anti-tumor effect and underlying mechanisms of the combination of cisplatin and the NEDD8-activating enzyme inhibitor MLN4924 in human bladder urothelial carcinoma. The combination of cisplatin and MLN4924 exerted synergistic cytotoxicity on two high-grade bladder urothelial carcinoma cell lines, NTUB1 and T24 (combination index <1). MLN4924 also potentiated the cisplatin-induced apoptosis and activation of caspase-3 and -7, phospho-histone H2A.X and PARP. c-Jun N-terminal kinase (JNK) activation and a down-regulation of B-cell lymphoma-extra large (Bcl-xL) were also observed during cisplatin and MLN4924 treatment. Inhibition of JNK activation partially restored cell viability and Bcl-xL expression. Bcl-xL overexpression also rescued cell viability. MLN4924 significantly potentiated cisplatin-induced tumor suppression in urothelial carcinoma xenograft mice. In summary, MLN4924 synergistically enhanced the anti-tumor effect of cisplatin via an increase in DNA damage, JNK activation and down-regulation of Bcl-xL in urothelial carcinoma cells. These findings provide a new therapeutic strategy for the treatment of bladder cancer.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Células Transicionales/tratamiento farmacológico , Cisplatino/farmacología , Ciclopentanos/farmacología , MAP Quinasa Quinasa 4/genética , Pirimidinas/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Proteína bcl-X/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Línea Celular Tumoral , Combinación de Medicamentos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Desnudos , Proteína NEDD8 , Clasificación del Tumor , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal , Ubiquitinas/genética , Ubiquitinas/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo
19.
J Chem Phys ; 142(7): 074707, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25702024

RESUMEN

The crystallinity effects on scaling properties of photoinduced modes in crystalline silver nanoprisms with C3v symmetry are studied using a realistic atomistic model and group theory. Among all vibrational modes, photoinduced modes can be identified as those vibrational modes which possess larger in-phase radial atomic displacement and can be projected out by the projected density of states method. We found that the properties of vibrations in silver nanoprisms strongly depend on the particle's aspect ratio (bisector length over thickness). By considering crystallinity of silver nanoprisms, the dominant modes with the in-plane oscillation become several closely spaced modes, and become obvious for nanoprisms with a smaller aspect ratio. The oscillation spectra show that the dominant planar modes are insensitive to thickness change. On the contrary, the atomic displacements show significantly different patterns for nanoprisms of different thicknesses. We also found that, for nanoprisms with same aspect ratio that is larger than 4, the vibrational properties of dominant modes exhibit scaling similarity. By using a simple linear transformation, the vibration frequencies for large-sized nanoprisms of aspect ratio 6 can be obtained by a corresponding scaling factor. The calculated results are in good agreement with experimental data.

20.
Cancer Lett ; 363(2): 127-36, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25615422

RESUMEN

MLN4924, a small molecule inhibitor of NEDD8 activating enzyme (NAE), has been reported to elicit an anti-tumor effect on various malignancies. In this study, we investigated the anti-tumor effect of MLN4924 in human urothelial carcinoma (UC) in vitro and in vivo by using three human UC cell lines of various grading (T24, NTUB1 and RT4). The impact of MLN4924 on UC cells was determined by measuring viability (MTT), proliferation (BrdU incorporation), cell cycle progression (flow cytometry with propidium iodide staining) and apoptosis (flow cytometry with annexin V-FITC labeling). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration and invasion was analyzed by Transwell and wound healing assays. We also evaluated the effects of MLN4924 on tumor growth by a SCID xenograft mouse model. The data show that MLN4924 induced dose-dependent cytotoxicity, anti-proliferation, anti-migration, anti-invasion and apoptosis in human UC cells, accompanied by activations of Bad, phospho-histone H2A.X, caspase-3, 7 and PARP, decreased level of phospho-Bcl2, and caused cell cycle retardation at the G2M phase. Moreover, MLN4924 activated endoplasmic reticulum stress-related molecules (caspase-4, phospho-eIF2α, ATF-4 and CHOP) and other stress responses (JNK and c-Jun activations). Finally, we confirmed MLN4924 inhibited tumor growth in a UC xenograft mouse model with minimal general toxicity. We concluded that MLN4924 induces apoptosis and cell cycle arrest, as well as activation of cell stress responses in human UC. These findings imply MLN4924 provides a novel strategy for the treatment of UC.


Asunto(s)
Carcinoma/tratamiento farmacológico , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclopentanos/administración & dosificación , Pirimidinas/administración & dosificación , Neoplasias Urológicas/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Carcinoma/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Citometría de Flujo , Humanos , Ratones , Proteína NEDD8 , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Enzimas Activadoras de Ubiquitina/genética , Ubiquitinas/antagonistas & inhibidores , Ubiquitinas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...