Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5202, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057633

RESUMEN

Spermidine is a natural polyamine that has health benefits and extends life span in several species. Deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH) are key enzymes that utilize spermidine to catalyze the post-translational hypusination of the translation factor EIF5A (EIF5AH). Here, we have found that hepatic DOHH mRNA expression is decreased in patients and mice with non-alcoholic steatohepatitis (NASH), and hepatic cells treated with fatty acids. The mouse and cell culture models of NASH have concomitant decreases in Eif5aH and mitochondrial protein synthesis which leads to lower mitochondrial activity and fatty acid ß-oxidation. Spermidine treatment restores EIF5AH, partially restores protein synthesis and mitochondrial function in NASH, and prevents NASH progression in vivo. Thus, the disrupted DHPS-DOHH-EIF5AH pathway during NASH represents a therapeutic target to increase hepatic protein synthesis and mitochondrial fatty acid oxidation (FAO) and prevent NASH progression.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Espermidina , Animales , Ácidos Grasos , Lisina/metabolismo , Ratones , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Espermidina/farmacología
2.
Thyroid ; 32(6): 725-738, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35317606

RESUMEN

Background: Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis, lobular inflammation, and fibrosis. Thyroid hormone (TH) reduces steatosis; however, the therapeutic effect of TH on NASH-associated inflammation and fibrosis is not known. This study examined the therapeutic effect of TH on hepatic inflammation and fibrosis during NASH and investigated THs molecular actions on autophagy and mitochondrial biogenesis. Methods: HepG2-TRß cells were treated with bovine serum albumin-conjugated palmitic acid (PA) to mimic lipotoxic conditions in vitro. Mice with NASH were established by feeding C57BL/6J mice Western diet with 15% fructose in drinking water for 16 weeks. These mice were administered triiodothyronine (T3)/thyroxine (T4) supplemented in drinking water for the next eight weeks. Results: In cultured HepG2-TRß cells, TH treatment increased mitochondrial respiration and fatty acid oxidation under basal and PA-treated conditions, as well as decreased lipopolysaccharides and PA-stimulated inflammatory and fibrotic responses. In a dietary mouse model of NASH, TH administration decreased hepatic triglyceride content (3.19 ± 0.68 vs. 8.04 ± 0.42 mM/g liver) and hydroxyproline (1.44 ± 0.07 vs. 2.58 ± 0.30 mg/g liver) when compared with mice with untreated NASH. Metabolomics profiling of lipid metabolites showed that mice with NASH had increased triacylglycerol, diacylglycerol, monoacylglycerol, and hepatic cholesterol esters species, and these lipid species were decreased by TH treatment. Mice with NASH also showed decreased autophagic degradation as evidenced by decreased transcription Factor EB and lysosomal protease expression, and accumulation of LC3B-II and p62. TH treatment restored the level of lysosomal proteins and resolved the accumulation of LC3B-II and p62. Impaired mitochondrial biogenesis was also restored by TH. The simultaneous restoration of autophagy and mitochondrial biogenesis by TH increased ß-oxidation of fatty acids. Additionally, the elevated oxidative stress and inflammasome activation in NASH liver were also decreased by TH. Conclusions: In a mouse model of NASH, TH restored autophagy and mitochondrial biogenesis to increase ß-oxidation of fatty acids and to reduce lipotoxicity, oxidative stress, hepatic inflammation, and fibrosis. Activating thyroid hormone receptor in the liver may represent an effective strategy for NASH treatment.


Asunto(s)
Agua Potable , Enfermedad del Hígado Graso no Alcohólico , Animales , Modelos Animales de Enfermedad , Agua Potable/metabolismo , Ácidos Grasos/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hormonas Tiroideas/metabolismo , Triglicéridos/metabolismo
3.
Endocrinology ; 162(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34086893

RESUMEN

Skeletal muscle (SM) weakness occurs in hypothyroidism and resistance to thyroid hormone α (RTHα) syndrome. However, the cell signaling and molecular mechanism(s) underlying muscle weakness under these conditions is not well understood. We thus examined the role of thyroid hormone receptor α (TRα), the predominant TR isoform in SM, on autophagy, mitochondrial biogenesis, and metabolism to demonstrate the molecular mechanism(s) underlying muscle weakness in these two conditions. Two genetic mouse models were used in this study: TRα1PV/+ mice, which express the mutant Thra1PV gene ubiquitously, and SM-TRα1L400R/+ mice, which express TRα1L400R in a muscle-specific manner. Gastrocnemius muscle from TRα1PV/+, SM-TRα1L400R/+, and their control mice was harvested for analyses. We demonstrated that loss of TRα1 signaling in gastrocnemius muscle from both the genetic mouse models led to decreased autophagy as evidenced by accumulation of p62 and decreased expression of lysosomal markers (lysosomal-associated membrane protein [LAMP]-1 and LAMP-2) and lysosomal proteases (cathepsin B and cathepsin D). The expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), mitochondrial transcription factor A (TFAM), and estrogen-related receptor α (ERRα), key factors contributing to mitochondrial biogenesis as well as mitochondrial proteins, were decreased, suggesting that there was reduced mitochondrial biogenesis due to the expression of mutant TRα1. Transcriptomic and metabolomic analyses of SM suggested that lipid catabolism was impaired and was associated with decreased acylcarnitines and tricarboxylic acid cycle intermediates in the SM from the mouse line expressing SM-specific mutant TRα1. Our results provide new insight into TRα1-mediated cell signaling, molecular, and metabolic changes that occur in SM when TR action is impaired.


Asunto(s)
Autofagia , Metabolismo de los Lípidos , Recambio Mitocondrial , Músculo Esquelético/metabolismo , Receptores alfa de Hormona Tiroidea/metabolismo , Animales , Metabolismo Energético , Hipotiroidismo/metabolismo , Masculino , Ratones , Músculo Esquelético/citología , Mutación , Receptores alfa de Hormona Tiroidea/genética
4.
Autophagy ; 17(12): 4043-4061, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33734012

RESUMEN

Hepatic macroautophagy/autophagy and fatty acid metabolism are transcriptionally regulated by nuclear receptors (NRs); however, it is not known whether their transcriptional co-activators are involved in autophagy. We thus examined MED1 (mediator complex subunit 1), a key component of the Mediator Complex that directly interacts with NRs, on these processes. We found that MED1 knockdown (KD) in cultured hepatic cells decreased autophagy and mitochondrial activity that was accompanied by decreased transcription of genes involved in these processes. Lipophagy and fatty acid ß-oxidation also were impaired. These effects also occurred after thyroid hormone stimulation, nutrient-replete or -deplete conditions, and in liver-specific Med1 KD (Med1 LKD) mice under fed and fasting conditions. Together, these findings showed that Med1 played a key role in hepatic autophagy, mitochondria function, and lipid metabolism under these conditions. Additionally, we identified downregulated hepatic genes in Med1 LKD mice, and subjected them to ChIP Enrichment Analysis. Our findings showed that the transcriptional activity of several NRs and transcription factors (TFs), including PPARA and FOXO1, likely were affected by Med1 LKD. Finally, Med1 expression and autophagy also were decreased in two mouse models of nonalcoholic fatty liver disease (NAFLD) suggesting that decreased Med1 may contribute to hepatosteatosis. In summary, MED1 plays an essential role in regulating hepatic autophagy and lipid oxidation during different hormonal and nutrient conditions. Thus, MED1 may serve as an integrator of multiple transcriptional pathways involved in these metabolic processes.Abbreviations: BAF: bafilomycin A1; db/db mice; Leprdb/db mice; ECAR: extracellular acidification rate; KD: knockdown; MED1: mediator complex subunit 1; NAFLD: nonalcoholic fatty liver disease; OCR: oxygen consumption rate; PPARA/PPARα: peroxisomal proliferator activated receptor alpha; TF: transcription factor; TFEB: transcription factor EB; tf-LC3: tandem fluorescence RFP-GFP-LC3; TG: triglyceride; TH: Thyroid hormone; TR: thyroid hormone receptors; V-ATPase: vacuolar-type H+-ATPase; WDF: Western diet with 15% fructose in drinking water.


Asunto(s)
Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Animales , Autofagia/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/genética , PPAR alfa/metabolismo
5.
Front Physiol ; 10: 1363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736784

RESUMEN

Although both exercise and thyroid hormone (TH) status can cause cellular and metabolic changes in skeletal muscle, the impact of TH status on exercise-associated changes is not well understood. Here, we examined the effects of TH status on muscle fiber type, cell signaling, and metabolism in a rabbit model of exercise training - chronic motor nerve stimulation (CMNS). Five rabbits were rendered hypothyroid for 7-8 weeks and three rabbits were made hyperthyroid for 2 weeks prior to CMNS of the left peroneal nerve for 10 days. We then measured markers of muscle fiber type, autophagy, and nutrient- or energy-sensing proteins, and metabolic intermediates. CMNS increased MHC-I expression in hypothyroid rabbits, whereas it was unchanged in hyperthyroid rabbits. CMNS also increased p-AMPK, p-ATGL, CPT-1α, p-Akt, GLUT4, and p-70S6K in hypothyroid rabbits. In contrast, p-AMPK and p-AKT were increased at baseline in hyperthyroid rabbits, but CMNS did not further increase them or any of the other markers. CMNS also increased TCA cycle and acylcarnitine metabolites in hypothyroid rabbits; whereas, acylcarnitines were already elevated in hyperthyroid rabbits, and were only slightly increased further by CMNS. In summary, CMNS effects on cell signaling and metabolism of skeletal muscle were more pronounced in the hypothyroid than the hyperthyroid state. Interestingly, in the hypothyroid state, CMNS caused concomitant activation of two signaling pathways that are usually reciprocally regulated - AMPK and mTOR signaling - which manifested as increased ß-oxidation, MHC-I expression, and protein synthesis. Thus, our findings provide insight into the role of TH status on exercise response in muscle. Our observations suggest that TH status of patients may be an important determinant and predictor of their response to exercise training in skeletal muscle.

6.
Sci Signal ; 11(536)2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29945885

RESUMEN

Thyroid hormone receptor ß1 (THRB1) and estrogen-related receptor α (ESRRA; also known as ERRα) both play important roles in mitochondrial activity. To understand their potential interactions, we performed transcriptome and ChIP-seq analyses and found that many genes that were co-regulated by both THRB1 and ESRRA were involved in mitochondrial metabolic pathways. These included oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, and ß-oxidation of fatty acids. TH increased ESRRA expression and activity in a THRB1-dependent manner through the induction of the transcriptional coactivator PPARGC1A (also known as PGC1α). Moreover, TH induced mitochondrial biogenesis, fission, and mitophagy in an ESRRA-dependent manner. TH also induced the expression of the autophagy-regulating kinase ULK1 through ESRRA, which then promoted DRP1-mediated mitochondrial fission. In addition, ULK1 activated the docking receptor protein FUNDC1 and its interaction with the autophagosomal protein MAP1LC3B-II to induce mitophagy. siRNA knockdown of ESRRA, ULK1, DRP1, or FUNDC1 inhibited TH-induced autophagic clearance of mitochondria through mitophagy and decreased OXPHOS. These findings show that many of the mitochondrial actions of TH are mediated through stimulation of ESRRA expression and activity, and co-regulation of mitochondrial turnover through the PPARGC1A-ESRRA-ULK1 pathway is mediated by their regulation of mitochondrial fission and mitophagy. Hormonal or pharmacologic induction of ESRRA expression or activity could improve mitochondrial quality in metabolic disorders.


Asunto(s)
Autofagia , Mitocondrias/fisiología , Dinámicas Mitocondriales , Mitofagia , Receptores de Estrógenos/metabolismo , Receptores beta de Hormona Tiroidea/fisiología , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosforilación , Receptores de Estrógenos/genética , Receptor Relacionado con Estrógeno ERRalfa
7.
Adipocyte ; 4(4): 303-10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26451287

RESUMEN

Brown fat has gained widespread attention as a potential therapeutic target to treat obesity and associated metabolic disorders. Indeed, the anti-obesity potential of multiple targets to stimulate both brown adipocyte differentiation and recruitment have been verified in rodent models. However, their therapeutic potential in humans is unknown due to the lack of a human primary brown adipocyte cell culture system. Likewise, the lack of a well-characterized human model has limited the discovery of novel targets for the activation of human brown fat. To address this current need, we aimed to identify and describe the first primary brown adipocyte cell culture system from human fetal interscapular brown adipose tissue. Pre-adipocytes isolated from non-viable human fetal interscapular tissue were expanded and cryopreserved. Cells were then thawed and plated alongside adult human subcutaneous and omental pre-adipocytes for subsequent differentiation and phenotypic characterization. Interscapular pre-adipocytes in cell culture differentiated into mature adipocytes that were morphologically indistinguishable from the adult white depots. Throughout differentiation, cultured human fetal interscapular adipocytes demonstrated increased expression of classical brown fat markers compared to subcutaneous and omental cells. Further, functional analysis revealed an elevation in fatty acid oxidation as well as maximal and uncoupled oxygen consumption in interscapular brown adipocytes compared to white control cells. These data collectively identify the brown phenotype of these cells. Thus, our primary cell culture system derived from non-viable human fetal interscapular brown adipose tissue provides a valuable tool for the study of human brown adipocyte biology and for the development of anti-obesity therapeutics.

8.
Oncotarget ; 6(1): 271-87, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25426559

RESUMEN

Cellular unfolded protein response (UPR) is induced when endoplasmic reticulum (ER) is under stress. XBP-1S, the active isoform of X-box binding protein 1 (XBP-1), is a key regulator of UPR. Previously, we showed that a histone acetyltransferase (HAT), p300/CBP-associated factor (PCAF), binds to XBP-1S and functions as an activator of XBP-1S. Here, we identify general control nonderepressible 5 (GCN5), a HAT with 73% identity to PCAF, as a novel XBP-1S regulator. Both PCAF and GCN5 bind to the same domain of XBP-1S. Surprisingly, GCN5 potently blocks the XBP-1S-mediated transcription, including cellular UPR genes and latent membrane protein 1 of Epstein-Barr virus. Unlike PCAF, GCN5 acetylates XBP-1S and enhances nuclear retention and protein stability of XBP-1S. However, such GCN5-mediated acetylation of XBP-1S shows no effects on XBP-1S activity. In addition, the HAT activity of GCN5 is not required for repression of XBP-1S target genes. We further demonstrate that GCN5 inhibits XBP-1S-mediated transcription by disrupting the PCAF-XBP-1S interaction and preventing the recruitment of XBP-1S to its target genes. Taken together, our results represent the first work demonstrating that GCN5 and PCAF exhibit different functions and antagonistically regulate the XBP-1S-mediated transcription.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Factores de Transcripción/biosíntesis , Activación Transcripcional/fisiología , Factores de Transcripción p300-CBP/metabolismo , Western Blotting , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Humanos , Inmunoprecipitación , Reacción en Cadena de la Polimerasa , Factores de Transcripción del Factor Regulador X , Transcripción Genética , Transfección , Proteína 1 de Unión a la X-Box
9.
Antiviral Res ; 102: 11-22, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316029

RESUMEN

Expression of the human cytomegalovirus (HCMV) major immediate-early (MIE) genes is regulated by a strong enhancer-containing promoter with multiple binding sites for various transcription factors, including cyclic AMP response element binding protein 1 (CREB1). Here we show that overexpression of CREB1 potently blocked MIE transcription and HCMV replication. Surprisingly, CREB1 still exhibited strong inhibition of the MIE promoter when all five CREB binding sites within the enhancer were mutated, suggesting that CREB1 regulated the MIE gene expression indirectly. Promoter deletion analysis and site-directed mutagenesis identified the region between -130 and -50 upstream of the transcription start site of the MIE gene as the "CREB1 responsive region". Mutations of SP1/3 and NF-κB binding sites within this region interrupted the inhibitory effect induced by CREB1 overexpression. Our findings suggest that overexpression of CREB1 can cause repression of HCMV replication and may contribute to the development of new anti-HCMV strategies.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Citomegalovirus/fisiología , Expresión Génica , Interacciones Huésped-Patógeno , Replicación Viral , Línea Celular , Citomegalovirus/genética , Análisis Mutacional de ADN , ADN Viral/genética , Genes Inmediatos-Precoces , Humanos , Mutagénesis Sitio-Dirigida , Regiones Promotoras Genéticas , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...