Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Vet Microbiol ; 293: 110085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581768

RESUMEN

To overcome shortcomings in discriminating Chlamydia pecorum strains infecting the koala (Phascolarctos cinereus) at the local level, we developed a novel genotyping scheme for this pathogen to inform koala management at a fine-scale subpopulation level. We applied this scheme to two geographically distinct koala populations in New South Wales, Australia: the Liverpool Plains and the Southern Highlands to South-west Sydney (SHSWS). Our method provides greater resolution than traditional multi-locus sequence typing, and can be used to monitor strain emergence, movement, and divergence across a range of fragmented habitats. Within the Liverpool Plains population, suspected recent introduction of a novel strain was confirmed by an absence of genetic diversity at the earliest sampling events and limited diversity at recent sampling events. Across the partially fragmented agricultural landscape of the Liverpool Plains, diversity within a widespread sequence type suggests that this degree of fragmentation may hinder but not prevent spread. In the SHSWS population, our results suggest movement of a strain from the south, where diverse strains exist, into a previously Chlamydia-free area in the north, indicating the risk of expansion towards an adjacent Chlamydia-negative koala population in South-west Sydney. In the south of the SHSWS where koala subpopulations appear segregated, we found evidence of divergent strain evolution. Our tool can be used to infer the risks of strain introduction across fragmented habitats in population management, particularly through practices such as wildlife corridor constructions and translocations.


Asunto(s)
Infecciones por Chlamydia , Chlamydia , Variación Genética , Tipificación de Secuencias Multilocus , Phascolarctidae , Phascolarctidae/microbiología , Animales , Chlamydia/genética , Chlamydia/clasificación , Chlamydia/aislamiento & purificación , Infecciones por Chlamydia/veterinaria , Infecciones por Chlamydia/microbiología , Genotipo , Nueva Gales del Sur , Filogenia
2.
Nature ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38560995

RESUMEN

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.

3.
Insect Sci ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462506

RESUMEN

Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.

4.
Ecol Evol ; 14(3): e11148, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476702

RESUMEN

With over 600 valid species, the wrasses (family Labridae) are among the largest and most successful families of the marine teleosts. They feature prominently on coral reefs where they are known not only for their impressive diversity in colouration and form but also for their functional specialisation and ability to occupy a wide variety of trophic guilds. Among the wrasses, the parrotfishes (tribe Scarini) display some of the most dramatic examples of trophic specialisation. Using abrasion-resistant biomineralized teeth, parrotfishes are able to mechanically extract protein-rich micro-photoautotrophs growing in and among reef carbonate material, a dietary niche that is inaccessible to most other teleost fishes. This ability to exploit an otherwise untapped trophic resource is thought to have played a role in the diversification and evolutionary success of the parrotfishes. In order to better understand the key evolutionary innovations leading to the success of these dietary specialists, we sequenced and analysed the genome of a representative species, the spotted parrotfish (Cetoscarus ocellatus). We find significant expansion, selection and duplications within several detoxification gene families and a novel poly-glutamine expansion in the enamel protein ameloblastin, and we consider their evolutionary implications. Our genome provides a useful resource for comparative genomic studies investigating the evolutionary history of this highly specialised teleostean radiation.

5.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526019

RESUMEN

Phylogenomic data provide valuable opportunities for studying evolutionary rates and timescales. These analyses require theoretical and statistical tools based on molecular clocks. We present ClockstaRX, a flexible platform for exploring and testing evolutionary rate signals in phylogenomic data. Here, information about evolutionary rates in branches across gene trees is placed in Euclidean space, allowing data transformation, visualization, and hypothesis testing. ClockstaRX implements formal tests for identifying groups of loci and branches that make a large contribution to patterns of rate variation. This information can then be used to test for drivers of genomic evolutionary rates or to inform models for molecular dating. Drawing on the results of a simulation study, we recommend forms of data exploration and filtering that might be useful prior to molecular-clock analyses.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Genómica , Genoma , Evolución Biológica , Filogenia
6.
Ecol Evol ; 14(3): e11066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435016

RESUMEN

Lepidoziaceae are the third-largest family of liverworts, with about 860 species distributed on all continents. The evolutionary history of this family has not been satisfactorily resolved, with taxa such as Micropterygioideae yet to be included in phylogenetic analyses. We inferred a dated phylogeny of Lepidoziaceae using a data set consisting of 13 genetic markers, sampled from 147 species. Based on our phylogenetic estimate, we used statistical dispersal-vicariance analysis to reconstruct the biogeographic history of the family. We inferred a crown age of 197 Ma (95% credible interval 157-240 Ma) for the family in the Australian region, with most major lineages also originating in the same region. Micropterygioideae are placed as the sister group to Lembidioideae, with these two lineages diverging from each other about 132 Ma in the South American-Australian region. With South America and Australia being connected through Antarctica at the time, our results suggest a circum-Antarctic link between Micropterygioideae and the rest of the family. Crown Micropterygioideae were inferred to have arisen 45 Ma in South America before the continent separated from Antarctica. Extinction from southern temperate regions might explain the present-day restriction of Micropterygioideae to the Neotropics. Our study reveals the influence of past geological events, such as continental drift, on the evolution and distribution of a widespread and diverse family of liverworts.

7.
Syst Biol ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320290

RESUMEN

Rates of nucleotide substitution vary substantially across the Tree of Life, with potentially confounding effects on phylogenetic and evolutionary analyses. A large acceleration in mitochondrial substitution rate occurs in the cockroach family Nocticolidae, which predominantly inhabit subterranean environments. To evaluate the impacts of this among-lineage rate heterogeneity on estimates of phylogenetic relationships and evolutionary timescales, we analysed nuclear ultraconserved elements (UCEs) and mitochondrial genomes from nocticolids and other cockroaches. Substitution rates were substantially elevated in nocticolid lineages compared with other cockroaches, especially in mitochondrial protein-coding genes. This disparity in evolutionary rates is likely to have led to different evolutionary relationships being supported by phylogenetic analyses of mitochondrial genomes and UCE loci. Furthermore, Bayesian dating analyses using relaxed-clock models inferred much deeper divergence times compared with a flexible local clock. Our phylogenetic analysis of UCEs, which is the first genome-scale study to include all thirteen major cockroach families, unites Corydiidae and Nocticolidae and places Anaplectidae as the sister lineage to the rest of Blattoidea. We uncover an extraordinary level of genetic divergence in Nocticolidae, including two highly distinct clades that separated ~115 million years ago despite both containing representatives of the genus Nocticola. The results of our study highlight the potential impacts of high among-lineage rate variation on estimates of phylogenetic relationships and evolutionary timescales.

8.
Syst Biol ; 72(6): 1337-1356, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37695237

RESUMEN

Determining the link between genomic and phenotypic change is a fundamental goal in evolutionary biology. Insights into this link can be gained by using a phylogenetic approach to test for correlations between rates of molecular and morphological evolution. However, there has been persistent uncertainty about the relationship between these rates, partly because conflicting results have been obtained using various methods that have not been examined in detail. We carried out a simulation study to evaluate the performance of 5 statistical methods for detecting correlated rates of evolution. Our simulations explored the evolution of molecular sequences and morphological characters under a range of conditions. Of the methods tested, Bayesian relaxed-clock estimation of branch rates was able to detect correlated rates of evolution correctly in the largest number of cases. This was followed by correlations of root-to-tip distances, Bayesian model selection, independent sister-pairs contrasts, and likelihood-based model selection. As expected, the power to detect correlated rates increased with the amount of data, both in terms of tree size and number of morphological characters. Likewise, greater among-lineage rate variation in the data led to improved performance of all 5 methods, particularly for Bayesian relaxed-clock analysis when the rate model was mismatched. We then applied these methods to a data set from flowering plants and did not find evidence of a correlation in evolutionary rates between genomic data and morphological characters. The results of our study have practical implications for phylogenetic analyses of combined molecular and morphological data sets, and highlight the conditions under which the links between genomic and phenotypic rates of evolution can be evaluated quantitatively.


Asunto(s)
Evolución Molecular , Genómica , Filogenia , Teorema de Bayes , Funciones de Verosimilitud , Simulación por Computador
9.
Syst Biol ; 72(4): 781-801, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-36919368

RESUMEN

Evolutionary timescales can be inferred by molecular-clock analyses of genetic data and fossil evidence. Bayesian phylogenetic methods such as tip dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of different densities of diversified sampling on Bayesian tip dating on unresolved fossilized birth-death (FBD) trees, in which fossil taxa are topologically constrained but their exact placements are averaged out. We used synthetic data generated by simulations of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses under the diversified-sampling FBD process show that increasing taxon-sampling density does not necessarily improve divergence-time estimates. However, when informative priors were specified for the root age or when tree topologies were fixed to those used for simulation, the performance of tip dating on unresolved FBD trees maintains its accuracy and precision or improves with taxon-sampling density. By exploring three situations in which models are mismatched, we find that including all relevant fossils, without pruning off those that are incompatible with the diversified-sampling FBD process, can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have practical implications for using Bayesian tip dating to infer evolutionary timescales across the Tree of Life. [Bayesian tip dating; eutherian mammals; fossilized birth-death process; phylogenomics; taxon sampling.].


Asunto(s)
Fósiles , Mamíferos , Humanos , Animales , Filogenia , Teorema de Bayes , Tiempo , Simulación por Computador
10.
Mol Phylogenet Evol ; 178: 107629, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36191898

RESUMEN

Australia is home to over 140 species of freshwater crayfish (Decapoda: Parastacidae), representing a centre of diversity for this group in the Southern Hemisphere. Species delimitation in freshwater crayfish is difficult because many species show significant variation in colouration and morphology. This is particularly evident in the genus Euastacus, which exhibits large variations in colour and spination throughout its putative range. To understand this variation, we investigated the genetic diversity, population structure, phylogeny, and evolutionary timescale of the Giant Sydney Crayfish (Euastacus spinifer (Heller, 1865)). Our data set is sampled from over 70 individuals from across the ∼600 km range of the species, and includes a combination of two mitochondrial markers and more than 7000 single-nucleotide polymorphisms (SNPs) from the nuclear genome. Data were also obtained for representatives of the close relative, Euastacus vesper McCormack and Ahyong, 2017. Genomic SNP analyses revealed strong population structure, with multiple distinct populations showing little evidence of gene flow or migration. Phylogenetic analyses of mitochondrial data revealed similar structure between populations. Taken together, our analyses suggest that E. spinifer, as currently understood, represents a species complex, of which E. vesper is a member. Molecular clock estimates place the divergences within this group during the Pleistocene. The isolated and highly fragmented populations identified in our analyses probably represent relict populations of a previously widespread ancestral species. Periodic flooding events during the Pleistocene are likely to have facilitated the movement of these otherwise restricted freshwater crayfish within and between drainage basins, including the Murray-Darling and South East Coast Drainages. We present evidence supporting the recognition of populations in the southern parts of the range of E. spinifer as one or two separate species, which would raise the number of species within the E. spinifer complex to at least three. Our results add to the growing body of evidence that many freshwater crayfish exhibit highly fragmented, range-restricted distributions. In combination with the life-history traits of these species, the restricted distributions exacerbate the threats already placed on freshwater crayfish, which are among the five most endangered animal groups globally.


Asunto(s)
Astacoidea , Decápodos , Animales , Astacoidea/genética , Filogenia , ADN Mitocondrial/genética , Análisis de Secuencia de ADN , Decápodos/genética , Genómica
11.
Virus Evol ; 8(2): veac060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903148

RESUMEN

Characterizing the detailed spatial and temporal dynamics of plant pathogens can provide valuable information for crop protection strategies. However, the epidemiological characteristics and evolutionary trajectories of pathogens can differ markedly from one country to another. The most widespread and important virus of brassica vegetables, turnip mosaic virus (TuMV), causes serious plant diseases in Japan. We collected 317 isolates of TuMV from Raphanus and Brassica plants throughout Japan over nearly five decades. Genomic sequences from these isolates were combined with published sequences. We identified a total of eighty-eight independent recombination events in Japanese TuMV genomes and found eighty-two recombination-type patterns in Japan. We assessed the evolution of TuMV through space and time using whole and partial genome sequences of both nonrecombinants and recombinants. Our results suggest that TuMV was introduced into Japan after the country emerged from its isolationist policy (1639-1854) in the Edo period and then dispersed to other parts of Japan in the 20th century. The results of our analyses reveal the complex structure of the TuMV population in Japan and emphasize the importance of identifying recombination events in the genome. Our study also provides an example of surveying the epidemiology of a virus that is highly recombinogenic.

12.
Trends Plant Sci ; 27(9): 858-869, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35568622

RESUMEN

The present-day ubiquity of angiosperm-insect pollination has led to the hypothesis that these two groups coevolved early in their evolutionary history. However, recent fossil discoveries and fossil-calibrated molecular dating analyses challenge the notion that early diversifications of angiosperms and insects were inextricably linked. In this article, we examine (i) the discrepancies between dates of emergence for angiosperms and major clades of insects; (ii) the long history of gymnosperm-insect pollination modes, which likely shaped early angiosperm-insect pollination mutualisms; and (iii) how the K-Pg (Cretaceous-Paleogene) mass extinction event was vital in propelling modern angiosperm-insect mutualisms. We posit that the early diversifications of angiosperms and their insect pollinators were largely decoupled until the end of the Cretaceous.


Asunto(s)
Magnoliopsida , Animales , Evolución Biológica , Fósiles , Insectos , Magnoliopsida/genética , Filogenia , Polinización
13.
Syst Biol ; 71(3): 676-689, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34508605

RESUMEN

The historical signal in nucleotide sequences becomes eroded over time by substitutions occurring repeatedly at the same sites. This phenomenon, known as substitution saturation, is recognized as one of the primary obstacles to deep-time phylogenetic inference using genome-scale data sets. We present a new test of substitution saturation and demonstrate its performance in simulated and empirical data. For some of the 36 empirical phylogenomic data sets that we examined, we detect substitution saturation in around 50% of loci. We found that saturation tends to be flagged as problematic in loci with highly discordant phylogenetic signals across sites. Within each data set, the loci with smaller numbers of informative sites are more likely to be flagged as containing problematic levels of saturation. The entropy saturation test proposed here is sensitive to high evolutionary rates relative to the evolutionary timeframe, while also being sensitive to several factors known to mislead phylogenetic inference, including short internal branches relative to external branches, short nucleotide sequences, and tree imbalance. Our study demonstrates that excluding loci with substitution saturation can be an effective means of mitigating the negative impact of multiple substitutions on phylogenetic inferences. [Phylogenetic model performance; phylogenomics; substitution model; substitution saturation; test statistics.].


Asunto(s)
Evolución Biológica , Genoma , Modelos Genéticos , Filogenia
14.
Syst Biol ; 71(2): 490-500, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255084

RESUMEN

Phylogenetic analyses of genomic data provide a powerful means of reconstructing the evolutionary relationships among organisms, yet such analyses are often hindered by conflicting phylogenetic signals among loci. Identifying the signals that are most influential to species-tree estimation can help to inform the choice of data for phylogenomic analysis. We investigated this in an analysis of 30 phylogenomic data sets. For each data set, we examined the association between several branch-length characteristics of gene trees and the distance between these gene trees and the corresponding species trees. We found that the distance of each gene tree to the species tree inferred from the full data set was positively associated with variation in root-to-tip distances and negatively associated with mean branch support. However, no such associations were found for gene-tree length, a measure of the overall substitution rate at each locus. We further explored the usefulness of the best-performing branch-based characteristics for selecting loci for phylogenomic analyses. We found that loci that yield gene trees with high variation in root-to-tip distances have a disproportionately distant signal of tree topology compared with the complete data sets. These results suggest that rate variation across lineages should be taken into consideration when exploring and even selecting loci for phylogenomic analysis.[Branch support; data filtering; nucleotide substitution model; phylogenomics; substitution rate; summary coalescent methods.].


Asunto(s)
Evolución Biológica , Genoma , Genómica , Modelos Genéticos , Filogenia
15.
Zootaxa ; 5222(3): 285-297, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37044524

RESUMEN

The Giant Sydney Crayfish (Euastacus spinifer (Heller, 1865)) was thought to have a wide range in New South Wales, Australia, spanning some 600 km north-south. A recent extensive molecular phylogenetic and population genomic analysis of E. spinifer across its geographical range revealed strong population structure corresponding to several major geographically correlated clades, the southernmost clade being the most genetically divergent and clearly a separate species. This southern clade corresponds to the junior synonym E. clydensis Riek, 1969 and is sister to the clade comprising the remaining populations of E. spinifer and Euastacus vesper. We formally remove E. clydensis from the synonymy of E. spinifer, increasing the recognised number of species of Euastacus to 54. Euastacus clydensis is redescribed based on type and other material, and is distinguished from E. spinifer by differences in abdominal spination and the form of the antennal scaphocerite. Euastacus clydensis has a restricted southern New South Wales range in the Shoalhaven and Jervis Bay-Clyde River catchments, from Moss Vale south to the vicinity of Clyde Mountain; much of the known range of E. clydensis was burnt in the 2019-2020 eastern Australian megafires.


Asunto(s)
Astacoidea , Animales , Astacoidea/anatomía & histología , Astacoidea/clasificación , Astacoidea/genética , Australia , Nueva Gales del Sur , Filogenia , Especificidad de la Especie
16.
Curr Biol ; 31(19): 4219-4230.e10, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34388371

RESUMEN

Multiple lines of evidence show that modern humans interbred with archaic Denisovans. Here, we report an account of shared demographic history between Australasians and Denisovans distinctively in Island Southeast Asia. Our analyses are based on ∼2.3 million genotypes from 118 ethnic groups of the Philippines, including 25 diverse self-identified Negrito populations, along with high-coverage genomes of Australopapuans and Ayta Magbukon Negritos. We show that Ayta Magbukon possess the highest level of Denisovan ancestry in the world-∼30%-40% greater than that of Australians and Papuans-consistent with an independent admixture event into Negritos from Denisovans. Together with the recently described Homo luzonensis, we suggest that there were multiple archaic species that inhabited the Philippines prior to the arrival of modern humans and that these archaic groups may have been genetically related. Altogether, our findings unveil a complex intertwined history of modern and archaic humans in the Asia-Pacific region, where distinct Islander Denisovan populations differentially admixed with incoming Australasians across multiple locations and at various points in time.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Asia , Asia Sudoriental , Australia , Hominidae/genética , Humanos , Hombre de Neandertal/genética , Filipinas , Grupos Raciales
17.
Mol Phylogenet Evol ; 161: 107180, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33887481

RESUMEN

Australian freshwater fishes are a relatively species-poor assemblage, mostly comprising groups derived from older repeated freshwater invasions by marine ancestors, plus a small number of Gondwanan lineages. These taxa are both highly endemic and highly threatened, but a comprehensive phylogeny for Australian freshwater fishes is lacking. This has hampered efforts to study their phylogenetic diversity, distribution of extinction risk, speciation rates, and rates of trait evolution. Here, we present a comprehensive dated phylogeny of 412 Australian fishes. We include all formally recognized freshwater species plus a number of genetically distinct subpopulations, species awaiting formal description, and predominantly brackish-water species that sometimes enter fresh water. The phylogeny was inferred using maximum-likelihood analysis of a multilocus data set comprising six mitochondrial and three nuclear genes from 326 taxa. We inferred the evolutionary timescale using penalized likelihood, then used a statistical approach to add 86 taxa for which no molecular data were available. The time-tree inferred in our study will provide a useful resource for macroecological studies of Australian freshwater fishes by enabling corrections for phylogenetic non-independence in evolutionary and ecological comparative analyses.


Asunto(s)
Peces/clasificación , Fósiles , Agua Dulce , Filogenia , Animales , Australia , Calibración , Peces/genética , Factores de Tiempo
18.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753512

RESUMEN

Island Southeast Asia has recently produced several surprises regarding human history, but the region's complex demography remains poorly understood. Here, we report ∼2.3 million genotypes from 1,028 individuals representing 115 indigenous Philippine populations and genome-sequence data from two ∼8,000-y-old individuals from Liangdao in the Taiwan Strait. We show that the Philippine islands were populated by at least five waves of human migration: initially by Northern and Southern Negritos (distantly related to Australian and Papuan groups), followed by Manobo, Sama, Papuan, and Cordilleran-related populations. The ancestors of Cordillerans diverged from indigenous peoples of Taiwan at least ∼8,000 y ago, prior to the arrival of paddy field rice agriculture in the Philippines ∼2,500 y ago, where some of their descendants remain to be the least admixed East Asian groups carrying an ancestry shared by all Austronesian-speaking populations. These observations contradict an exclusive "out-of-Taiwan" model of farming-language-people dispersal within the last four millennia for the Philippines and Island Southeast Asia. Sama-related ethnic groups of southwestern Philippines additionally experienced some minimal South Asian gene flow starting ∼1,000 y ago. Lastly, only a few lowlanders, accounting for <1% of all individuals, presented a low level of West Eurasian admixture, indicating a limited genetic legacy of Spanish colonization in the Philippines. Altogether, our findings reveal a multilayered history of the Philippines, which served as a crucial gateway for the movement of people that ultimately changed the genetic landscape of the Asia-Pacific region.


Asunto(s)
Migración Humana/historia , Grupos de Población/historia , Agricultura , Asia Sudoriental/etnología , Australia/etnología , Femenino , Flujo Genético , Genómica , Historia Antigua , Humanos , Masculino , Oryza , Filipinas , Grupos de Población/genética , Taiwán/etnología
19.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33741737

RESUMEN

Plant pathogens have agricultural impacts on a global scale and resolving the timing and route of their spread can aid crop protection and inform control strategies. However, the evolutionary and phylogeographic history of plant pathogens in Eurasia remains largely unknown because of the difficulties in sampling across such a large landmass. Here, we show that turnip mosaic potyvirus (TuMV), a significant pathogen of brassica crops, spread from west to east across Eurasia from about the 17th century CE. We used a Bayesian phylogenetic approach to analyze 579 whole genome sequences and up to 713 partial sequences of TuMV, including 122 previously unknown genome sequences from isolates that we collected over the past five decades. Our phylogeographic and molecular clock analyses showed that TuMV isolates of the Asian-Brassica/Raphanus (BR) and basal-BR groups and world-Brassica3 (B3) subgroup spread from the center of emergence to the rest of Eurasia in relation to the host plants grown in each country. The migration pathways of TuMV have retraced some of the major historical trade arteries in Eurasia, a network that formed the Silk Road, and the regional variation of the virus is partly characterized by different type patterns of recombinants. Our study presents a complex and detailed picture of the timescale and major transmission routes of an important plant pathogen.


Asunto(s)
Brassica/virología , Economía , Genoma Viral , Genómica , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Variación Genética , Genómica/métodos , Geografía , Filogenia , Filogeografía , Potyvirus/clasificación
20.
Syst Biol ; 71(1): 1-12, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33620490

RESUMEN

The fairy wrasses (genus Cirrhilabrus) are among the most successful of the extant wrasse lineages (Teleostei: Labridae), with their 61 species accounting for nearly 10$\%$ of the family. Although species complexes within the genus have been diagnosed on the basis of coloration patterns and synapomorphies, attempts to resolve evolutionary relationships among these groups using molecular and morphological data have largely been unsuccessful. Here, we use a phylogenomic approach with a data set comprising 991 ultraconserved elements (UCEs) and mitochondrial COI to uncover the evolutionary history and patterns of temporal and spatial diversification of the fairy wrasses. Our analyses of phylogenetic signal suggest that most gene-tree incongruence is caused by estimation error, leading to poor resolution in a summary-coalescent analysis of the data. In contrast, analyses of concatenated sequences are able to resolve the major relationships of Cirrhilabrus. We determine the placements of species that were previously regarded as incertae sedis and find evidence for the nesting of Conniella, an unusual, monotypic genus, within Cirrhilabrus. Our relaxed-clock dating analysis indicates that the major divergences within the genus occurred around the Miocene-Pliocene boundary, followed by extensive cladogenesis of species complexes in the Pliocene-Pleistocene. Biogeographic reconstruction suggests that the fairy wrasses emerged within the Coral Triangle, with episodic fluctuations of sea levels during glacial cycles coinciding with shallow divergence events but providing few opportunities for more widespread dispersal. Our study demonstrates both the resolving power and limitations of UCEs across shallow timescales where there is substantial estimation error in individual gene trees.[Biogeography; concatenation; gene genealogy interrogation; gene trees; molecular dating; summary coalescent; UCEs.].


Asunto(s)
Evolución Biológica , Perciformes , Animales , Peces , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...