Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 409(18): 4335-4352, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28555344

RESUMEN

This critical review of electrochemical biosensors allowing direct detection of nucleic acid targets reports on different transduction pathways and their latest breakthroughs. A classification of the various strategies based on the nature of the electrochemical transduction is established to emphasize the efficiency of each of them. It provides an overall picture of the detection limit of the various approaches developed during the last two decades. Graphical Abstract Detection limits evolutions of electrochemical DNA biosensors.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Límite de Detección , Ácidos Nucleicos/química
2.
Anal Chem ; 88(24): 12108-12115, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28193063

RESUMEN

The local electrochemical behavior of a solid-liquid interface can be studied by electrochemical impedance spectroscopy (EIS). The investigated surface area can be delimited by adding a drop of solution, which forms an interface between the liquid drop and the working electrode, and performing the measurements inside. The size of the drop must be sufficiently small for a simultaneous wettability characterization (from the contact angle measurement) and appropriately large so that wettability is not influenced by the presence of the working and the counter electrode inserted in the droplet. In this work, we showed that EIS measurements can be performed in a solution droplet of 2 to 4 µL, although the electrochemical cell lacks the usual geometry. For our measurements, we studied a model system consisting of a KCl aqueous solution of [Fe(CN)6]3-/4- redox couple at a Pt electrode. All the results were compared with those obtained for a bulk configuration. The sessile drop configuration and the EIS response were modeled using finite element method for different electrode sizes and configurations to account for electrochemical kinetics and both current and potential distributions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...