Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Invest Dermatol ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38522569

RESUMEN

Prurigo nodularis (PN) is a chronic, inflammatory skin condition that disproportionately affects African Americans and features intensely pruritic, hyperkeratotic nodules on the extremities and trunk. PN is understudied compared to other inflammatory skin diseases, with the spatial organization of the cutaneous infiltrate in PN yet to be characterized. In this work, we employ spatial imaging mass cytometry to visualize prurigo nodularis lesional skin inflammation and architecture with single cell resolution through an unbiased machine learning approach. PN lesional skin has increased expression of caspase 3, NFkB, and pSTAT3 as compared to healthy skin. Keratinocytes in lesional skin are subdivided into CD14+CD33+, CD11c+, CD63+, and caspase 3+ innate subpopulations. CD14+ macrophage populations expressing pERK1/2 correlate positively with patient-reported itch (p=0.006). Hierarchical clustering reveals a cluster of prurigo nodularis patients with greater atopy, increased NFkB+pSTAT3+pERK1/2+ MoDCs, and increased vimentin expression (p<0.05). Neighborhood analysis finds interactions between CD14+ macrophages, CD3+ T cells, MoDCs, and keratinocytes expressing innate immune markers. These findings highlight pERK+CD14+ macrophages as contributors to itch and suggest an epithelial-immune axis in prurigo nodularis pathogenesis.

2.
Cell Rep Med ; 5(2): 101397, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307029

RESUMEN

Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias Pancreáticas , Ratones , Animales , Humanos , Linfocitos T/patología , Neoplasias Pancreáticas/patología , Comunicación Celular , Microambiente Tumoral
3.
J Invest Dermatol ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38246584

RESUMEN

Prurigo nodularis (PN) is an intensely pruritic, inflammatory skin disease with a poorly understood pathogenesis. We performed single-cell transcriptomic profiling of 28,695 lesional and nonlesional PN cells. Lesional PN has increased dysregulated fibroblasts (FBs) and myofibroblasts. FBs in lesional PN were shifted toward a cancer-associated FB-like phenotype, with POSTN+WNT5A+ cancer-associated FBs increased in PN and similarly so in squamous cell carcinoma. A multicenter cohort study revealed an increased risk of squamous cell carcinoma and cancer-associated FB-associated malignancies (breast and colorectal) in patients with PN. Systemic fibroproliferative diseases (renal sclerosis and idiopathic pulmonary fibrosis) were upregulated in patients with PN. Ligand-receptor analyses demonstrated an FB neuronal axis with FB-derived WNT5A and periostin interactions with neuronal receptors melanoma cell adhesion molecule and ITGAV. These findings identify a pathogenic and targetable POSTN+WNT5A+ FB subpopulation that may predispose cancer-associated FB-associated malignancies in patients with PN.

4.
Cancer Immunol Res ; 12(4): 400-412, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260999

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.


Asunto(s)
Colangiocarcinoma , Cisplatino , Gemcitabina , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Cisplatino/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Gemcitabina/uso terapéutico , Microambiente Tumoral
6.
Cell Rep Methods ; 3(12): 100670, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38086385

RESUMEN

The immune system defines a complex network of tissues and cell types that orchestrate responses across the body in a dynamic manner. The local and systemic interactions between immune and cancer cells contribute to disease progression. Lymphocytes are activated in lymph nodes, traffic through the periphery, and impact cancer progression through their interactions with tumor cells. As a result, therapeutic response and resistance are mediated across tissues, and a comprehensive understanding of lymphocyte dynamics requires a systems-level approach. In this review, we highlight experimental and computational methods that can leverage the study of leukocyte trafficking through an immunomics lens and reveal how adaptive immunity shapes cancer.


Asunto(s)
Inmunoinformática , Neoplasias , Humanos , Linfocitos , Neoplasias/terapia , Leucocitos , Ganglios Linfáticos
7.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961529

RESUMEN

The addition of anti-VEGF antibody treatment to immune checkpoint blockade (ICB) has increased the efficacy of immunotherapy in advanced hepatocellular carcinoma (HCC). Despite an initial promise, adding multitargeted kinase inhibitors of VEGFR with ICB has failed to increase survival in HCC. To reveal the mechanisms underlying treatment failure, we studied the effects of cabozantinib/ICB using orthotopic murine HCC models with or without liver damage. We monitored tumor growth and liver function, recorded survival outcomes, and performed immune profiling studies for intra-tumoral and surrounding liver. Cabozantinib/ICB treatment led to tumor regression and significantly improved survival in mice with normal livers. However, consistent with the clinical findings, combination therapy failed to show survival benefits despite similar tumor control when tested in the same models but in mice with liver fibrosis. Moreover, preclinical and clinical data converged, showing that activating immune responses by cabozantinib/ICB treatment induced hepatoxicity. Immune profiling revealed that combination therapy effectively reprogrammed the tumor immune microenvironment and increased NK cell infiltration and activation in the damaged liver tissue. Surprisingly, systemic depletion of NK reduced hepatotoxicity elicited by the combination therapy without compromising its anti-cancer effect, and significantly enhanced the survival benefit even in mice with HCC and underlying liver fibrosis. These findings demonstrate that preventing NK activation allowed for maintaining a favorable therapeutic ratio when combining ICB with cabozantinib in advanced HCC models.

8.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37904980

RESUMEN

Neoadjuvant immunotherapy is thought to produce long-term remissions through induction of antitumor immune responses before removal of the primary tumor. Tertiary lymphoid structures (TLS), germinal center-like structures that can arise within tumors, may contribute to the establishment of immunological memory in this setting, but understanding of their role remains limited. Here, we investigated the contribution of TLS to antitumor immunity in hepatocellular carcinoma (HCC) treated with neoadjuvant immunotherapy. We found that neoadjuvant immunotherapy induced the formation of TLS, which were associated with superior pathologic response, improved relapse free survival, and expansion of the intratumoral T and B cell repertoire. While TLS in viable tumor displayed a highly active mature morphology, in areas of tumor regression we identified an involuted TLS morphology, which was characterized by dispersion of the B cell follicle and persistence of a T cell zone enriched for ongoing antigen presentation and T cell-mature dendritic cell interactions. Involuted TLS showed increased expression of T cell memory markers and expansion of CD8+ cytotoxic and tissue resident memory clonotypes. Collectively, these data reveal the circumstances of TLS dissolution and suggest a functional role for late-stage TLS as sites of T cell memory formation after elimination of viable tumor.

9.
Healthcare (Basel) ; 11(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37761768

RESUMEN

Health-related quality of life (HRQoL) is known to be an important prognostic indicator and clinical endpoint for patients with hepatocellular carcinoma (HCC). However, the correlation of the Barcelona Clinic Liver Cancer (BCLC) stage with HRQoL in HCC has not been previously studied. We examined the relationship between BCLC stage, Child-Pugh (CP) score, and Eastern Cooperative Oncology Group (ECOG) performance status on HRQoL for patients who presented at a multidisciplinary liver cancer clinic. HRQoL was assessed using the Functional Assessment of Cancer Therapy-Hepatobiliary (FACT-Hep) questionnaire. Fifty-one patients met our inclusion criteria. The FACT-Hep total and subscales showed no significant association with BCLC stages (p = 0.224). Patients with CP B had significantly more impairment in FACT-Hep than patients with CP A. These data indicate that in patients with HCC, impaired liver function is associated with reduced quality of life, whereas the BCLC stage poorly correlates with quality of life metrics. Impairment of quality of life is common in HCC patients and further studies are warranted to determine the impact of early supportive interventions on HRQoL and survival outcomes.

11.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645761

RESUMEN

Human clinical trials are important tools to advance novel systemic therapies improve treatment outcomes for cancer patients. The few durable treatment options have led to a critical need to advance new therapeutics in hepatocellular carcinoma (HCC). Recent human clinical trials have shown that new combination immunotherapeutic regimens provide unprecedented clinical response in a subset of patients. Computational methods that can simulate tumors from mathematical equations describing cellular and molecular interactions are emerging as promising tools to simulate the impact of therapy entirely in silico. To facilitate designing dosing regimen and identifying potential biomarkers, we developed a new computational model to track tumor progression at organ scale while reflecting the spatial heterogeneity in the tumor at tissue scale in HCC. This computational model is called a spatial quantitative systems pharmacology (spQSP) platform and it is also designed to simulate the effects of combination immunotherapy. We then validate the results from the spQSP system by leveraging real-world spatial multi-omics data from a neoadjuvant HCC clinical trial combining anti-PD-1 immunotherapy and a multitargeted tyrosine kinase inhibitor (TKI) cabozantinib. The model output is compared with spatial data from Imaging Mass Cytometry (IMC). Both IMC data and simulation results suggest closer proximity between CD8 T cell and macrophages among non-responders while the reverse trend was observed for responders. The analyses also imply wider dispersion of immune cells and less scattered cancer cells in responders' samples. We also compared the model output with Visium spatial transcriptomics analyses of samples from post-treatment tumor resections in the original clinical trial. Both spatial transcriptomic data and simulation results identify the role of spatial patterns of tumor vasculature and TGFß in tumor and immune cell interactions. To our knowledge, this is the first spatial tumor model for virtual clinical trials at a molecular scale that is grounded in high-throughput spatial multi-omics data from a human clinical trial.

12.
Cancer Res Commun ; 3(7): 1312-1317, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37484200

RESUMEN

Combination anti-PD-(L)1/CTLA-4 blockade is approved in patients with hepatocellular carcinoma (HCC) in the first-line setting or after sorafenib, but whether this treatment has efficacy after prior anti-PD-(L)1 therapy is unknown. We performed a multicenter retrospective review of patients with advanced HCC treated with ipilimumab plus nivolumab after prior anti-PD-(L)1 therapy, excluding patients with prior anti-CTLA-4 treatment. Of the 32 patients who met our inclusion criteria, prior anti-PD-(L)1 regimens included atezolizumab plus bevacizumab (50%, n = 16), other anti-VEGF plus anti-PD-(L)1 combinations (31%, n = 10), and anti-PD-(L)1 monotherapy (19%, n = 6). The median number of prior systemic therapies was 2 (range, 1-8). The objective response rate with ipilimumab plus nivolumab by RECIST 1.1 was 22% [1 complete response (3%), 6 partial response (19%), 8 stable disease (25%), 16 progressive disease (50%), and 1 not evaluable (NE) (3%)], and objective response was associated with improved progression-free survival and overall survival. Immune-related adverse events were reported in 13 patients (41%), with no new safety signals. This study demonstrates that ipilimumab plus nivolumab has efficacy in patients with HCC who have received prior anti-PD-(L)1 therapy, suggesting that failure to respond to prior PD-(L)1 blockade should not preclude treatment with salvage ipilimumab plus nivolumab. Prospective studies are needed to define the optimal sequence of therapies. Significance: Anti-PD-(L)1 containing regimens are the preferred first-line treatment for advanced HCC, but whether salvage with PD-(L)1/CTLA-4 blockade is effective in patients who have failed prior anti-PD-(L)1 therapy is unknown. Our study demonstrates that ipilimumab plus nivolumab has clinical activity in patients with advanced HCC previously treated with anti-PD-(L)1 therapy, supporting the continued use of this regimen in the late-line setting after prior anti-PD-(L)1 exposure.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Nivolumab , Ipilimumab , Carcinoma Hepatocelular/inducido químicamente , Antígeno B7-H1 , Neoplasias Hepáticas/inducido químicamente
13.
Cell Syst ; 14(4): 285-301.e4, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37080163

RESUMEN

Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.


Asunto(s)
Algoritmos , Microambiente Tumoral , Comunicación Celular , Biología Computacional , Perfilación de la Expresión Génica
14.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778229

RESUMEN

Prurigo nodularis (PN) is an intensely pruritic, chronic inflammatory skin disease that disproportionately affects black patients. However, the pathogenesis of PN is poorly understood. We performed single-cell transcriptomic profiling, ligand receptor analysis and cell trajectory analysis of 28,695 lesional and non-lesional PN skin cells to uncover disease-identifying cell compositions and genetic characteristics. We uncovered a dysregulated role for fibroblasts (FBs) and myofibroblasts as a key pathogenic element in PN, which were significantly increased in PN lesional skin. We defined seven unique subclusters of FBs in PN skin and observed a shift of PN lesional FBs towards a cancer-associated fibroblast (CAF)-like phenotype, with WNT5A+ CAFs increased in the skin of PN patients and similarly so in squamous cell carcinoma (SCC). A multicenter PN cohort study subsequently revealed an increased risk of SCC as well as additional CAF-associated malignancies in PN patients, including breast and colorectal cancers. Systemic fibroproliferative diseases were also upregulated in PN patients, including renal sclerosis and idiopathic pulmonary fibrosis. Ligand receptor analyses demonstrated increased FB1-derived WNT5A and periostin interactions with neuronal receptors MCAM and ITGAV, suggesting a fibroblast-neuronal axis in PN. Type I IFN responses in immune cells and increased angiogenesis/permeability in endothelial cells were also observed. As compared to atopic dermatitis (AD) and psoriasis (PSO) patients, increased mesenchymal dysregulation is unique to PN with an intermediate Th2/Th17 phenotype between atopic dermatitis and psoriasis. These findings identify a pathogenic role for CAFs in PN, including a novel targetable WNT5A+ fibroblast subpopulation and CAF-associated malignancies in PN patients.

15.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747853

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Anti-PD-L1 immunotherapy combined with gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers, but responses are seen only in a minority of patients. Here, we studied the roles of anti-PD1 and anti-CTLA-4 immune checkpoint blockade (ICB) therapies when combined with gemcitabine/cisplatin and the mechanisms of treatment benefit in orthotopic murine ICC models. We evaluated the effects of the combined treatments on ICC vasculature and immune microenvironment using flow cytometry analysis, immunofluorescence, imaging mass cytometry, RNA-sequencing, qPCR, and in vivo T-cell depletion and CD8+ T-cell transfer using orthotopic ICC models and transgenic mice. Combining gemcitabine/cisplatin with anti-PD1 and anti-CTLA-4 antibodies led to substantial survival benefits and reduction of morbidity in two aggressive ICC models, which were ICB-resistant. Gemcitabine/cisplatin treatment increased the frequency of tumor-infiltrating lymphocytes and normalized the ICC vessels, and when combined with dual CTLA-4/PD1 blockade, increased the number of activated CD8+Cxcr3+IFN-γ+ T-cells. Depletion of CD8+ but not CD4+ T-cells compromised efficacy. Conversely, CD8+ T-cell transfer from Cxcr3-/- versus Cxcr3+/+ mice into Rag1-/- immunodeficient mice restored the anti-tumor effect of gemcitabine/cisplatin/ICB combination therapy. Finally, rational scheduling of the ICBs (anti-CTLA-4 "priming") with chemotherapy and anti-PD1 therapy achieved equivalent efficacy with continuous dosing while reducing overall drug exposure. In summary, gemcitabine/cisplatin chemotherapy normalizes vessel structure, increases activated T-cell infiltration, and enhances anti-PD1/CTLA-4 immunotherapy efficacy in aggressive murine ICC. This combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.

16.
J Clin Oncol ; 41(12): 2181-2190, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36623241

RESUMEN

PURPOSE: Pembrolizumab significantly improves clinical outcomes in advanced/metastatic microsatellite instability high (MSI-H)/deficient mismatch repair (dMMR) solid tumors but is not well studied in the neoadjuvant space. METHODS: This is a phase II open-label, single-center trial of localized unresectable or high-risk resectable MSI-H/dMMR tumors. Treatment is pembrolizumab 200 mg once every 3 weeks for 6 months followed by surgical resection with an option to continue therapy for 1 year followed by observation. To continue on study, patients are required to have radiographic or clinical benefit. The coprimary end points are safety and pathologic complete response. Key secondary end points are response rate and organ-sparing at one year for patients who declined surgery. Exploratory analyses include interrogation of the tumor immune microenvironment using imaging mass cytometry. RESULTS: A total of 35 patients were enrolled, including 27 patients with colorectal cancer and eight patients with noncolorectal cancer. Among 33 evaluable patients, best overall response rate was 82%. Among 17 (49%) patients who underwent surgery, the pathologic complete response rate was 65%. Ten patients elected to receive one year of pembrolizumab followed by surveillance without surgical resection (median follow-up of 23 weeks [range, 0-54 weeks]). An additional eight did not undergo surgical resection and received less than 1 year of pembrolizumab. During the study course of the trial and subsequent follow-up, progression events were seen in six patients (four of whom underwent salvage surgery). There were no new safety signals. Spatial immune profiling with imaging mass cytometry noted a significantly closer proximity between granulocytic cells and cytotoxic T cells in patients with progressive events compared with those without progression. CONCLUSION: Neoadjuvant pembrolizumab in dMMR/MSI-H cancers is safe and resulted in high rates of pathologic, radiographic, and endoscopic response, which has implications for organ-sparing strategies.


Asunto(s)
Antineoplásicos Inmunológicos , Neoplasias Colorrectales , Neoplasias , Humanos , Antineoplásicos Inmunológicos/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Terapia Neoadyuvante , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
17.
STAR Protoc ; 4(1): 101949, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36538397

RESUMEN

Techniques for robust immune profiling of mouse tumor and blood are key to understanding immunological responses in mouse models of cancer. Here, we describe mass cytometry (cytometry by time-of-flight) procedures to facilitate high-parameter profiling of low-volume survival blood samples and end-of-study tumor samples. We employ live-cell barcoding systems to mark all cells from each tumor and blood to improve cost-effectiveness and minimize batch effects. For complete details on the use and execution of this protocol, please refer to Charmsaz et al. (2021).1.


Asunto(s)
Neoplasias , Animales , Ratones , Monitorización Inmunológica , Neoplasias/diagnóstico , Modelos Animales de Enfermedad
18.
Hepatology ; 77(5): 1566-1579, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35941803

RESUMEN

BACKGROUND AND AIMS: The treatment of hepatocellular carcinoma (HCC) has been transformed by the use of immune checkpoint inhibitors. However, most patients with HCC do not benefit from treatment with immunotherapy. There is an urgent need to understand the mechanisms that underlie response or resistance to immunotherapy for patients with HCC. The use of syngeneic mouse models that closely recapitulate the heterogeneity of human HCC will provide opportunities to examine the complex interactions between cancer cells and nonmalignant cells in the tumor microenvironment. APPROACH AND RESULTS: We leverage a multifaceted approach that includes imaging mass cytometry and suspension cytometry by time of flight to profile the tumor microenvironments of the Hep53.4, Hepa 1-6, RIL-175, and TIBx (derivative of TIB-75) syngeneic mouse HCC models. The immune tumor microenvironments vary across these four models, and various immunosuppressive pathways exist at baseline in orthotopic liver tumors derived from these models. For instance, TIBx, which is resistant to anti-programmed cell death protein 1 therapy, contains a high proportion of "M2-like" tumor-associated macrophages with the potential to diminish antitumor immunity. Investigation of The Cancer Genome Atlas reveals that the baseline immunologic profiles of Hep53.4, RIL-175, and TIBx are broadly representative of human HCCs; however, Hepa 1-6 does not recapitulate the immune tumor microenvironment of the vast majority of human HCCs. CONCLUSIONS: There is a wide diversity in the immune tumor microenvironments in preclinical models and in human HCC, highlighting the need to use multiple syngeneic HCC models to improve the understanding of how to treat HCC through immune modulation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Inmunoterapia/métodos , Neoplasias Hepáticas/patología , Microambiente Tumoral , Receptor de Muerte Celular Programada 1/metabolismo
19.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36323435

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and is the third-leading cause of cancer-related death worldwide. Most patients with HCC are diagnosed at an advanced stage, and the median survival for patients with advanced HCC treated with modern systemic therapy is less than 2 years. This leaves the advanced stage patients with limited treatment options. Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) or its ligand, are widely used in the treatment of HCC and are associated with durable responses in a subset of patients. ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) also have clinical activity in HCC. Combination therapy of nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) is the first treatment option for HCC to be approved by Food and Drug Administration that targets more than one immune checkpoints. METHODS: In this study, we used the framework of quantitative systems pharmacology (QSP) to perform a virtual clinical trial for nivolumab and ipilimumab in HCC patients. Our model incorporates detailed biological mechanisms of interactions of immune cells and cancer cells leading to antitumor response. To conduct virtual clinical trial, we generate virtual patient from a cohort of 5,000 proposed patients by extending recent algorithms from literature. The model was calibrated using the data of the clinical trial CheckMate 040 (ClinicalTrials.gov number, NCT01658878). RESULTS: Retrospective analyses were performed for different immune checkpoint therapies as performed in CheckMate 040. Using machine learning approach, we predict the importance of potential biomarkers for immune blockade therapies. CONCLUSIONS: This is the first QSP model for HCC with ICIs and the predictions are consistent with clinically observed outcomes. This study demonstrates that using a mechanistic understanding of the underlying pathophysiology, QSP models can facilitate patient selection and design clinical trials with improved success.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Factores Inmunológicos/uso terapéutico , Inmunoterapia , Ipilimumab/farmacología , Ipilimumab/uso terapéutico , Farmacología en Red , Nivolumab/farmacología , Nivolumab/uso terapéutico , Estudios Retrospectivos , Estados Unidos
20.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214223

RESUMEN

Mass cytometry, or cytometry by TOF (CyTOF), provides a robust means of determining protein-level measurements of more than 40 markers simultaneously. While the functional states of immune cells occur along continuous phenotypic transitions, cytometric studies surveying cell phenotypes often rely on static metrics, such as discrete cell-type abundances, based on canonical markers and/or restrictive gating strategies. To overcome this limitation, we applied single-cell trajectory inference and nonnegative matrix factorization methods to CyTOF data to trace the dynamics of T cell states. In the setting of cancer immunotherapy, we showed that patient-specific summaries of continuous phenotypic shifts in T cells could be inferred from peripheral blood-derived CyTOF mass cytometry data. We further illustrated that transfer learning enabled these T cell continuous metrics to be used to estimate patient-specific cell states in new sample cohorts from a reference patient data set. Our work establishes the utility of continuous metrics for CyTOF analysis as tools for translational discovery.


Asunto(s)
Benchmarking , Linfocitos T , Biomarcadores/análisis , Ensayos Clínicos como Asunto , Citometría de Flujo/métodos , Factores Inmunológicos , Inmunoterapia , Monitorización Inmunológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...