Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6458, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833267

RESUMEN

Controlling the propagation and emission of light via Bloch surface waves (BSWs) has held promise in the field of on-chip nanophotonics. BSW-based optical devices are being widely investigated to develop on-chip integration systems. However, a coherent light source that is based on the stimulated emission of a BSW mode has yet to be developed. Here, we demonstrate lasers based on a guided BSW mode sustained by a gain-medium guiding structure microfabricated on the top of a BSW platform. A long-range propagation length of the BSW mode and a high-quality lasing emission of the BSW mode are achieved. The BSW lasers possess a lasing threshold of 6.7 µJ/mm2 and a very narrow linewidth reaching a full width at half maximum as small as 0.019 nm. Moreover, the proposed lasing scheme exhibits high sensitivity to environmental changes suggesting the applicability of the proposed BSW lasers in ultra-sensitive devices.

2.
Adv Mater ; 35(42): e2303203, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587849

RESUMEN

Although chiral semiconductors have shown promising progress in direct circularly polarized light (CPL) detection and emission, they still face potential challenges. A chirality-switching mechanism or approach integrating two enantiomers is needed to discriminate the handedness of a given CPL; additionally, a large material volume is required for sufficient chiroptical interaction. These two requirements pose significant obstacles to the simplification and miniaturization of the devices. Here, room-temperature chiral polaritons fulfilling dual-handedness functions and exhibiting a more-than-two-order enhancement of the chiroptical signal are demonstrated, by embedding a 40 nm-thick perovskite film with a 2D chiroptical effect into a Fabry-Pérot cavity. By mixing chiral perovskites with different crystal structures, a pronounced 2D chiroptical effect is accomplished in the perovskite film, featured by an inverted chiroptical response for counter-propagating CPL. This inversion behavior matches the photonic handedness switch during CPL circulation in the Fabry-Pérot cavity, thus harvesting giant enhancement of the chiroptical response. Furthermore, affected by the unique quarter-wave-plate effects, the polariton emission achieves a chiral dissymmetry of ±4% (for the emission from the front and the back sides). The room-temperature polaritons with the strong dissymmetric chiroptical interaction shall have implications on a fundamental level and future on-chip applications for biomolecule analysis and quantum computing.

3.
ACS Appl Mater Interfaces ; 15(30): 36945-36950, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37463328

RESUMEN

Circularly polarized emission (CPE) plays an important role in the designs of advanced displays and photonic integrated circuits. Unfortunately, the control of CPE handedness is limited by the chiral metasurfaces employed to emit chiral light. Particularly, the switching of the handedness with chiral metasurfaces relies on flipping the metasurfaces, which adds some constraints to practical applications. Herein, we propose an angle-sensitive chiral metamirror with Mie resonators to realize handedness switching. The Mie resonator supports a magnetic dipole having large field enhancement. This chiral metamirror is applied to excite CPEs with opposite handedness at emission angles within 10°. In contrast to the conventional methods, this work proposes a more efficient approach to manipulate the handedness of CPE.

4.
Small ; 18(44): e2204070, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36123147

RESUMEN

Solution-process perovskite quantum dots (QDs) are promising materials to be utilized in photovoltaics and photonics with their superior optical properties. Advancements in top-down nanofabrication for perovskite are thus important for practical photonic and plasmonic devices. However, different from the chemically synthesized nano/micro-structures that show high quality and low surface roughness, the perovskite QD thin film prepared by spin-coating or the drop-casting process shows a large roughness and inhomogeneity. Low-roughness and low-optical loss perovskite QD thin film is highly desired for photonic and optoelectronic devices. Here, this work presents a pressure-assisted ligand engineering/recrystallization process for high-quality and well-thickness controlled CsPbBr3 QD film and demonstrates a low-threshold and single-mode plasmonic lattice laser. A recrystallization process is proposed to prepare the QD film with a low roughness (RMS = 1.3 nm) and small thickness (100 nm). Due to the low scattering loss and strong interaction between gain media and plasmonic nanoparticles, a low lasing threshold of 16.9 µJ cm-2 is achieved. It is believed that this work is not only important to the plasmonic laser field but also provides a promising and general nanofabrication method of solution-processed QDs for various photonic and plasmonic devices.

5.
Nanoscale ; 14(28): 10075-10081, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35792030

RESUMEN

Perovskite materials prepared in the form of solution-processed nanocrystals and used in top-down fabrication techniques are very attractive to develop low-cost and high-quality integrated optoelectronic circuits. Particularly, integrated miniaturized coherent light sources that can be connected to light-guiding structures on a chip are highly desired. To control light propagating on a small footprint with low-loss optical modes, long-range surface plasmon polariton (LRSPP) waveguides are employed. Herein, we demonstrate an on-chip fabricated photonic-plasmonic hybrid system consisting of a perovskite lasing structure coupled to an LRSPP waveguide achieving a low lasing threshold and a propagation length over 100 µm. Preventing perovskite material degradation and the formation of surface roughness of the laser cavity during fabrication is made possible by designing a fabrication technique without any etching step.

6.
ACS Appl Mater Interfaces ; 14(12): 14012-14024, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35297595

RESUMEN

The surface plasmon resonance (SPR)-based sensor has been widely used for biodetection. One of the attractive roles is the gold nanostructure with Fano resonance. Its sharp resonant profile takes advantage of the high figure of merit (FoM) in high-sensitivity detection. However, it is still difficult to detect small molecules at low concentrations due to the extremely low refractive index changes on the metallic surface. We propose using the coupling of image dipoles of gold nanoparticles (AuNPs) and Fano resonance of periodic capped gold nanoslits (CGNs) for sensitive small-molecule detections. The coupling mechanism was verified by three-dimensional finite-difference time-domain calculations and experiments. AuNPs on CGN form image dimer assemblies and induce image dipole with resonance wavelengths ranging from 730 to 550 nm. The surface plasmon polaritons (SPPs) interact with the image dipole of the AuNP on the CGNs and then scatter out through the periodic gold caps. The experimental results show that the peak intensity of grating resonance is decreased by the effect of image dipole and exhibits the maximum intensity change when the Fano resonance matches the resonance of image dipole. The 50 nm AuNPs can be detected with a surface density of less than one particle/µm2 by using the intensity change as the signal. With the resonant coupling between Fano resonance and image dipole extinction, the oligonucleotide with a molecular weight of 5.5 kDa can be detected at a concentration of 100 fM. The resonant coupling dramatically pushes the sensitivity boundary, and we report the limit of detection (LOD) to be 3 orders of magnitude lower than that of the prism-based SPR. This study provides a promising and efficient method for detecting low concentrations of small molecules such as aptamers, miRNA, mRNA, and peptides.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Oligonucleótidos , Resonancia por Plasmón de Superficie/métodos
7.
ACS Nano ; 16(2): 2224-2232, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35119823

RESUMEN

Near-zero-index materials and structures, with their extraordinary optical behaviors of phase-free propagation resulting in directional radiation, provide a possible approach for directional coupling and optical logic gates in photonic integrated circuits. However, the radiation from the near-zero-index structures is limited to a short range of a few hundreds of nanometers. A Bloch surface wave (BSW), an electromagnetic surface wave that can be excited at the interface between an all-dielectric multilayer and a dielectric medium with a low-loss optical mode, provides a solution to increase the propagation length. In this work, we present a nanostructured near-zero-index slab integrated on the all-dielectric metal-free BSW platform for long-range surface wave radiation. By employing the long-range directional surface-wave radiation, a directional coupler and optical logic gates based on the BSW near-zero-index slabs are realized. The proposed directional couplers achieve long coupling distances (the electric-field magnitude ratio between the input slab and output slab is 0.22 with a 50 µm coupling distance), which is 2 orders of magnitude longer than that of conventional directional couplers based on evanescent wave coupling. By controlling the interference pattern of the BSW between the slabs, the XOR logic gate is experimentally demonstrated with a significant extinction ratio of 27.9 dB at telecommunications wavelengths. The BSW near-zero-index logic gates and the directional coupler with long-range light propagation provide an approach to the development of photonic integrated circuits and metal-free surface wave-based applications.

8.
Nanoscale ; 13(37): 15830-15836, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34516594

RESUMEN

Extensive studies on lead halide perovskites have shown that these materials are excellent candidates as gain mediums. Recently, many efforts have been made to incorporate perovskite lasers in integrated optical circuits. Possible solutions would be to utilize standard lithography with an etching/lift-off process or a direct laser etching technique. However, due to the fragile nature of the lead halide perovskites which gives rise to significant material deterioration during the lithography and etching processes, realizing a small-size, low-roughness, and single-mode laser remains a challenge. Here, a lithographic in-mold patterning method realized by nanocrystal concentration control and a multi-step filling-drying process is proposed to demonstrate CsPbBr3 nanocrystals distributed-Bragg-reflector (DBR) waveguide lasers. This method realizes the patterning of the CsPbBr3 nanocrystal laser cavity and DBR grating without lift-off and etching processes, and the smallest fabricated structures are obtained in a few hundred nanometers. The single-mode lasing is demonstrated at room temperature with a threshold of 23.5 µJ cm-2. The smallest full width at half maximum FWHM of the laser output is 0.4 nm. Due to the fabrication process and the DBR laser geometry, the lasers can be fabricated in a compact array, which is important for incorporating perovskite-based lasers in complex optoelectronic circuits.

9.
Biosens Bioelectron ; 191: 113463, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34198171

RESUMEN

An osmium-coated lensed fiber (OLF) probe combined with a silver-coated black silicon (SBS) substrate was used to generate a dielectrophoretic (DEP) force that traps bacteria and enables Raman signal detection from bacteria. The lensed fiber coated with a 2-nm osmium layer was used as an electrode for the DEP force and also as a lens to excite Raman signals. The black silicon coated with a 150-nm silver layer was used both as the surface-enhanced Raman scattering (SERS) substrate and the counter electrode. The enhanced Raman signal was collected by the same OLF probe and further analyzed with a spectrometer. For Raman measurements, a drop of bacterial suspension was placed between the OLF probe and the SBS substrate. By controlling the frequency of an AC voltage on the OLF probe and SBS substrate, a DEP force at 1 MHz concentrated bacteria on the SBS surface and removed the unbound micro-objects in the solution at 1 kHz. A bacteria concentration of 6 × 104 CFU/mL (colony forming units per mL) could be identified in less than 15 min, using a volume of only 1 µL, by recording the variation of the Raman peak at 740 cm-1.


Asunto(s)
Técnicas Biosensibles , Silicio , Bacterias , Espectrometría Raman
10.
ACS Appl Bio Mater ; 3(9): 6331-6342, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021763

RESUMEN

Surface plasmon resonances on Ga-doped ZnO (ZnO/Ga) layer surfaces (ZnO-SPRs) have attracted substantial attention as alternative plasmonic materials in the infrared range. We present further enhancement of the detection limits of ZnO-SPRs to monitor biological interactions by introducing thin dielectric layers into ZnO-SPRs, which remarkably modify the electric fields and the corresponding decay lengths on the sensing surfaces. The presence of a high-permittivity dielectric layer of Ga2O3 provides high wavelength sensitivities of the ZnO-SPRs due to the strongly confined electric fields. The superior sensing capabilities of the proposed samples were verified by real-time monitoring of the biological interactions between biotin and streptavidin molecules. Introduction of the high-permittivity dielectric layer into ZnO-SPRs effectively enhances the detection sensitivity and therefore allowed for the observation of biological interactions. This paper provides useful information for the development of optical detection techniques for use in biological fields based on ZnO from the viewpoints of plasmonic applications.

11.
Sensors (Basel) ; 19(22)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31717912

RESUMEN

An axicon fiber tip combined with a camera device is developed to sensitively detect refractive indexes in solutions. The transparent axicon tips were made by etching optical fibers through a wet end-etching method at room temperature. When the axicon fiber tip was immersed in various refractive index media, the angular spectrum of the emitted light from the axicon fiber tip was changed. Using a low numerical aperture lens to collect the directly transmitted light, a high intensity sensitivity was achieved when the tip cone angle was about 35 to 40 degrees. We combined the axicon fiber tip with a laser diode and a smartphone into a portable refractometer. The front camera of the smartphone was used to collect the light emitted from the axicon fiber tip. By analyzing the selected area of the captured images, the refractive index can be distinguished for various solutions. The refractive index sensitivity was up to 56,000%/RIU, and the detection limit was 1.79 × 10-5 RIU. By measuring the refractive index change via the axicon fiber tip, the concentration of different mediums can be sensitively detected. The detection limits of the measurement for sucrose solutions, saline solutions, and diluted wine were 8.86 × 10-3 °Bx, 0.12‱, and 0.35%, respectively.

12.
Nanoscale ; 11(37): 17407-17414, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31528935

RESUMEN

Tamm plasmonic (TP) structures, consisting of a metallic film and a distributed Bragg reflector (DBR), can exhibit pronounced light confinement allowing for enhanced absorption in the metallic film at the wavelength of the TP resonance. This wavelength dependent absorption can be converted into an electrical signal through the internal photoemission of energetic hot-electrons from the metallic film. Here, by replacing the metallic film at the top of a TP structure with a hot-electron device in a metal-semiconductor-ITO (M-S-ITO) configuration, for the first time, we experimentally demonstrate a wavelength-selective photoresponse around the telecommunication wavelength of 1550 nm. The M-S-ITO junction is deliberately designed to have a low energy barrier and asymmetrical hot-electron generation, in order to guarantee a measurable net photocurrent even for sub-bandgap incident light with a photon energy of 0.8 eV (1550 nm). Due to the excitation of TPs between the metallic film in the M-S-ITO structure and the underlying DBR, the fabricated TP coupled hot-electron photodetector exhibits a sharp reflectance dip with a bandwidth of 43 nm at a wavelength of 1581 nm. The photoresponse matches the absorptance spectrum, with a maximum value of 8.26 nA mW-1 at the absorptance peak wavelength that decreases by more than 80% when the illumination wavelength is varied by only 52 nm (from 1581 to 1529 nm), thus realizing a high modulation wavelength-selective photodetector. This study demonstrates a high-performance, lithography-free, and wavelength-selective hot-electron near-infrared photodetector using an M-S-ITO-DBR planar structure.

13.
Nano Lett ; 18(12): 7769-7776, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30423249

RESUMEN

Plasmonic-waveguide lasers, which exhibit subdiffraction limit lasing and light propagation, are promising for the next-generation of nanophotonic devices in computation, communication, and biosensing. Plasmonic lasers supporting waveguide modes are often based on nanowires grown with bottom-up techniques that need to be transferred and aligned for use in optical circuits. Here, we demonstrate a monolithically fabricated ZnO/Al plasmonic-waveguide nanolaser compatible with the fabrication requirements of on-chip circuits. The nanolaser is designed with a plasmonic metal layer on the top of the laser cavity only, providing highly efficient energy transfer between photons, excitons, and plasmons, and achieving lasing in the ultraviolet region up to 330 K with a low threshold intensity (0.20 mJ/cm2 at room temperature). This work demonstrates the realization of a plasmonic-waveguide nanolaser without the need for transfer and positioning steps, which is the key for on-chip integration of nanophotonic devices.

14.
Nanoscale ; 10(12): 5449-5456, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29493702

RESUMEN

We present a systematic study on the fabrication, characterization and high temperature surface enhanced Raman spectroscopy (SERS) performance of SiO2 coated silver nanoparticles (Ag@SiO2) on a flat substrate, aiming to obtain a thermally robust SERS substrate for monitoring high temperature reactions. We confirm that a 10-15 nm SiO2 coating provides a structure stability up to 900 °C without significantly sacrificing the enhancement factor, while the uncoated particle cannot retain the SERS effect above 500 °C. The finite difference time domain (FDTD) simulation results supported that the SiO2 coating almost has no influence on the distribution of the electric field but only physically trapped the most enhanced spot inside the coating layer. On this thermally robust substrate, we confirmed that the SERS of horizontally aligned single walled carbon nanotubes is stable at elevated temperatures, and demonstrate an in situ Raman monitoring of the atmosphere of the annealing process of nanodiamonds, in which the interconverting process of C-C bonds is unambiguously observed. We claim that this is a first experimental proof that the high temperature SERS effect can be preserved and applied in a chemical reaction at temperature above 500 °C. This versatile substrate also enables novel opportunities for observing growth, etching, and structure transformation of many 0D and 2D nano-materials.

15.
Nanotechnology ; 28(12): 125206, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28170345

RESUMEN

The significant enhancement seen in surface-enhanced Raman scattering (SERS) heavily relies on the ability of plasmonic structures to strongly confine light. Current techniques used to fabricate plasmonic nanostructures have been limited in their reproducibility for bottom-up techniques or their feature size for top-down techniques. Here, we propose a tooth multilayer structure that can be fabricated by using physical vapor deposition and selective wet etching, achieving extremely small feature sizes and high reproducibility. A multilayer structure composed of two alternating materials whose thicknesses can be controlled accurately in the nanometer range is deposited on a flat substrate using ion-beam sputtering. Subsequent selective wet etching is used to form nanogaps in one of the materials constituting the multilayer, with the depth of the nanogaps being controlled by the wet etching time. Combining both techniques can allow the nanogap dimensions to be controlled at sub 10 nm length scale, thus achieving a tooth multilayer structure with high enhancement and tunability of the resonance mode over a broad range, ideal for SERS applications.

16.
Nanotechnology ; 27(42): 425202, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27623320

RESUMEN

Subwavelength structures sustaining surface plasmons have been employed in numerous fields due to their small size and ability to manipulate light beyond the diffraction limit. Light filtering using small-size plasmonic devices is a promising means of portable spectroscopy for purposes such as on-site chemical analyses. However, most plasmonic filters can only tune the resonance band by modifying the geometry of the structure or changing the incident light angle. Here, we present a plasmonic nanofin-cavity structure having a narrow band with its resonance wavelength controlled by varying the fluid in the hollow cavities of the filter. Control of the narrow-band resonance is realized over a wide range because of the coupling between the stationary surface plasmons generated from the nanofin-cavity mode and the propagating surface plasmons. The hollow cavity design enables fluid to be easily injected and removed, so that the filtered band can be controlled without the need for a complex and bulky structure or application of an external voltage.

17.
ACS Appl Mater Interfaces ; 8(25): 15975-84, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27295080

RESUMEN

A single-step electrophoretic deposition (EPD) process is used to fabricate catalyst layers which consist of nickel oxide nanoparticles attached on the surface of nanographitic flakes. Magnesium ions present in the colloid charge positively the flake's surface as they attach on it and are also used to bind nanographitic flakes together. The fabricated catalyst layers showed a very low onset voltage (-0.2 V vs Ag/AgCl) in the electro-oxidation of ethanol. To clarify the occurring catalytic mechanism, we performed annealing treatment to produce samples having a different electrochemical behavior with a large onset voltage. Temperature dependence measurements of the layer conductivity pointed toward a charge transport mechanism based on hopping for the nonannealed layers, while the drift transport is observed in the annealed layers. The hopping charge transport is responsible for the appearance of the low onset voltage in ethanol electro-oxidation.

18.
Nano Lett ; 16(5): 3094-100, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27120263

RESUMEN

The optical response of subwavelength plasmonic structures can be used to monitor minute changes in their physical, chemical, and biological environments with high performance for sensing. The optical response in the far field is governed by the near-field properties of plasmon resonances. Sharp, tunable resonances can be obtained by controlling the shape of the structure and by using resonant cavities. However, microintegration of plasmonic structures on chips is difficult because of the readout in the far field. As such, structures that form an electrical microcircuit and directly monitor the near-field variation would be more desirable. Here, we report on an electronically readable photocapacitor based on a plasmonic nanochannel structure with high spectral resolution and a large modulation capability. The structure consists of metallic U-cavities and semiconductor channels, which are used to focus and confine light at the semiconductor-metal interfaces. At these interfaces, light is efficiently converted into photocarriers that change the electrical impedance of the structure. The capacitance modulation of the structure in response to light produces a light-to-dark contrast ratio larger than 10(3). A reflectance spectrum with a bandwidth of 16 nm and a 6% modulation depth is detected using a reactance variation of 3 kΩ with the same bandwidth. This photocapacitor design offers a practical means of monitoring changes induced by the near field and thus could be deployed in pixel arrays of image sensors for miniaturized spectroscopic applications.

19.
Opt Express ; 21(2): 1531-40, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23389135

RESUMEN

We report numerical analysis of the coupling of localized surface plasmons to the modes of U-shaped cavities. The coupling results in intense resonance for which the electric field is strongly enhanced on the cavity surfaces. As a result, an optical vortex in the power flow is formed in the cavities and a sharp and strong resonance dip is observed in the reflectance spectrum. High sensitivity of the dip wavelength to change in the refractive index of the surrounding medium is reported. The high sensitivity is realized with a small number of cavities, thus enabling miniaturization of detectors based on U-shaped cavities.


Asunto(s)
Diseño Asistido por Computadora , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización
20.
Appl Opt ; 52(36): 8809-16, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24513947

RESUMEN

Power-flow focusing in metal nanostructures is attracting growing attention to design efficient and tunable substrates for surface-enhanced Raman spectroscopy (SERS), and to propose a more reliable alternative to random surfaces for single-molecule sensing. In this paper, finite-difference time-domain simulations were used to explore the near-field amplification features of short chains of gold (Au) nanospheres. Short chains of gold spheres were found to induce stronger field enhancements than infinite chains due to a more efficient trapping and focusing of the incident energy. In addition, interaction with a suitably tuned SiO2/Au double-layer substrate was demonstrated to widen the resonance's bandwidth, meeting another practical need for SERS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...