Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 12590, 2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31467386

RESUMEN

Permethrin, 3-Phenoxybenzyl (1 RS)-cis,trans-3-(2,2-dichlorovinyl)- 2,2-dimethylcyclopropanecarboxylate, has a wide range of applications like insecticide, insect repellent and prevents mosquito-borne diseases, such as dengue fever and malaria in tropical areas. In this work, we develop a prominent monitoring method for the detection of permethrin pesticide using surface-enhanced Raman scattering (SERS) optical fibre substrates. The novel SERS-active optical fibre substrates were grown and deposited silver (Ag) nano-dendrites on the end of multi-mode fibre core by laser-assisted photochemical method. The characteristic of the Ag-nanostructures could be controlled by the experimental conditions, namely, laser illumination time. Ag nanoparticles optical fibre substrates and Ag nano-dendrites optical fibre substrates were prepared with laser illumination time of 3 min and 8 min, respectively. The achieved SERS-activity optical fibre substrates were tested with Rhodamine 6G aqueous solutions. We demonstrate that the SERS activity coupled with Ag nano-dendrites optical fibre substrate has higher Raman enhancement factor due to the creation of many of hot-spots for amplifying Raman signals. Besides, the stability and reproducibility of the Ag nano-dendrites optical fibre substrate were also evaluated with stored time of 1000 hours and relative standard deviation of less than 3%. The Ag nano-dendrite optical fibre substrate was selected for detection of permethrin pesticide in the concentration range of 0.1 ppm-20 ppm with limit of quantification (LOQ) of 0.1 ppm and calculated limit of detection (LOD) of 0.0035 ppm, proving its great potential for direct, rapid detection and monitoring of permethrin.

2.
Environ Technol ; 40(26): 3403-3411, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29733761

RESUMEN

A vast majority of the organic solvents used in industry and laboratories are volatile, hazardous and toxic organic compounds, they are considered as a potent problem for human health and a cause of environmental pollution. Although analytical laboratory methods can determine extremely low solvent concentration, the sensing method with low cost and high sensitivity remains a conundrum. This paper presents and compares three methods (volatile organic compound (VOC), liquid drop and saturated vapour pressure) for determination of organic solvents in a liquid environment by using photonic sensor based on nano-porous silicon (pSi) microcavity structures. Among those, the VOC method provides the highest sensitivity at low solvent volume concentrations because it can create a high vapour pressure of the analyte on the sensor surface owing to the capillary deposition of the organic solvent into the silicon pores. This VOC method consists of three steps: heating the solution with its particular boiling temperature, controlling the flowing gas through liquid and cooling sensor. It delivers the highest sensitivity of 6.9 nm/% at a concentration of 5% and the limit of detection (LOD) of pSi-sensor is 0.014% in case of ethanol in water when using an optical system with a resolution of 0.1 nm. Especially, the VOC method is capable of detecting low volume concentration of methanol in two tested ethanol solutions of 30% (v/v) and 45% (v/v) with the LOD of pSi-sensor up to 0.01% and 0.04%, respectively. This result will help pave a way to control the quality of contaminated liquor beverages.


Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Límite de Detección , Porosidad , Silicio , Solventes
3.
Opt Lett ; 42(11): 2228-2231, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569888

RESUMEN

Polymer-sorted semiconducting single-walled carbon nanotubes (SWNTs) provide room-temperature emission at near-infrared wavelengths, with potential for large volume production of high-quality solutions and wafer-scale deposition. These features make SWNTs a very attractive material for the realization of on-chip light sources. Coupling SWNT into optical microcavities could enhance and guide their emission, while enabling spectral selection by cavity resonance engineering. This could allow the realization of bright, narrowband sources. Here, we report the first demonstration of coupling SWNTs into the resonant modes of Si hollow-core photonic crystal cavities. We exploit the strong evanescent field in these resonators to interact with SWNT emission, coupling it into an integrated access waveguide. Based on this concept, we demonstrate narrowband SWNT emission resonantly coupled into a Si bus waveguide with a full width at half-maximum of 0.34 nm and an off-resonance rejection exceeding 5 dB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...