Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evolution ; 65(7): 1979-91, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21729053

RESUMEN

The isolation barriers restricting gene flow between populations or species are of crucial interest for understanding how biological species arise and how they are maintained. Few studies have examined the entire range of possible isolation barriers from geographic isolation to next generation hybrid viability. Here, we present a detailed analysis of isolation barriers between two flowering plant species of the genus Petunia (Solanaceae). Petunia integrifolia and P. axillaris feature divergent pollination syndromes but can produce fertile hybrids when crossed in the laboratory. Both Petunia species are primarily isolated in space but appear not to hybridize in sympatry. Our experiments demonstrate that pollinator isolation is very high but not strong enough to explain the absence of hybrids in nature. However, pollinator isolation in conjunction with male gametic isolation (i.e., pollen-pistil interaction) can explain the lack of natural hybridization, while postzygotic isolation barriers are low or nonexistent. Our study supports the notion that reproductive isolation in flowering plants is mainly caused by pre- rather than postzygotic isolation mechanisms.


Asunto(s)
Flores/anatomía & histología , Hibridación Genética , Petunia/genética , Polinización , Fertilidad , Flores/crecimiento & desarrollo , Petunia/anatomía & histología , Petunia/crecimiento & desarrollo , Petunia/fisiología , Fenotipo , Reproducción , Especificidad de la Especie , Uruguay
2.
Plant Cell ; 19(3): 779-90, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17337627

RESUMEN

Animal-mediated pollination is essential in plant reproductive biology and is often associated with pollination syndromes, sets of floral traits, such as color, scent, shape, or nectar content. Selection by pollinators is often considered a key factor in floral evolution and plant speciation. Our aim is the identification and characterization of the genetic changes that caused the evolution of divergent pollination syndromes in closely related plant species. We focus on ANTHOCYANIN2 (AN2), a well-defined myb-type transcription factor that is a major determinant of flower color variation between Petunia integrifolia and Petunia axillaris. Analysis of sequence variation in AN2 in wild P. axillaris accessions showed that loss-of-function alleles arose at least five times independently. DNA sequence analysis was complemented by functional assays for pollinator preference using genetic introgressions and transgenics. These results show that AN2 is a major determinant of pollinator attraction. Therefore, changes in a single gene cause a major shift in pollination biology and support the notion that the adaptation of a flowering plant to a new pollinator type may involve a limited number of genes of large effect. Gene identification and analysis of molecular evolution in combination with behavioral and ecological studies can ultimately unravel the evolutionary genetics of pollination syndromes.


Asunto(s)
Abejas/fisiología , Escarabajos/fisiología , Genes de Plantas , Petunia/genética , Petunia/fisiología , Polen/fisiología , Animales , Teorema de Bayes , Conducta Animal , ADN Complementario/genética , Ecosistema , Evolución Molecular , Datos de Secuencia Molecular , Petunia/clasificación
3.
Planta ; 225(1): 203-12, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16871396

RESUMEN

The two related Petunia species, P. axillaris and P. integrifolia, are sympatric at various locations in South America but do not hybridise. Divergent pollinator preferences are believed to be in part responsible for their reproductive isolation. The volume of nectar produced and several components of flower morphology might contribute to pollinator-dependant reproductive isolation. In this study, we aimed to identify the genetic changes underlying the quantitative differences observed between these two Petunia species in flower size and nectar volume. We mapped quantitative trait loci (QTL) responsible for the different phenotypes of P. axillaris and P. integrifolia in an inter-specific backcross population. QTL of small to moderate effect control the differences in flower size and volume of nectar. In addition, we observed strong suppression of meiotic recombination in Petunia, even between closely related species, which precluded a fine resolution of QTL mapping. Thus, our data suggest that flower size and nectar volume are highly polygenic. They are likely to have evolved gradually through pollinator-mediated adaptation or reinforcement, and are not likely to have been primary factors in early steps of pollinator isolation of P. axillaris and P. integrifolia.


Asunto(s)
Flores/genética , Petunia/genética , Sitios de Carácter Cuantitativo/genética , Cruzamientos Genéticos , Flores/anatomía & histología , Flores/fisiología , Genes de Plantas/genética , Genotipo , Petunia/anatomía & histología , Petunia/fisiología , Fenotipo , Polen/genética , Polen/fisiología
4.
J Chem Ecol ; 31(9): 2003-18, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16132209

RESUMEN

The odor produced by a plant under herbivore attack is often used by parasitic wasps to locate hosts. Any type of surface damage commonly causes plant leaves to release so-called green leaf volatiles, whereas blends of inducible compounds are more specific for herbivore attack and can vary considerably among plant genotypes. We compared the responses of naïve and experienced parasitoids of the species Cotesia marginiventris and Microplitis rufiventris to volatiles from maize leaves with fresh damage (mainly green leaf volatiles) vs. old damage (mainly terpenoids) in a six-arm olfactometer. These braconid wasps are both solitary endoparasitoids of lepidopteran larvae, but differ in geographical origin and host range. In choice experiments with odor blends from maize plants with fresh damage vs. blends from plants with old damage, inexperienced C. marginiventris showed a preference for the volatiles from freshly damaged leaves. No such preference was observed for inexperienced M. rufiventris. After an oviposition experience in hosts feeding on maize plants, C. marginiventris females were more attracted by a mixture of volatiles from fresh and old damage. Apparently, C. marginiventris has an innate preference for the odor of freshly damaged leaves, and this preference shifts in favor of a blend containing a mixture of green leaf volatiles plus terpenoids, after experiencing the latter blend in association with hosts. M. rufiventris responded poorly after experience and preferred fresh damage odors. Possibly, after associative learning, this species uses cues that are more directly related with the host presence, such as volatiles from host feces, which were not present in the odor sources offered in the olfactometer. The results demonstrate the complexity of the use of plant volatiles by parasitoids and show that different parasitoid species have evolved different strategies to exploit these signals.


Asunto(s)
Lepidópteros/parasitología , Avispas/fisiología , Zea mays/metabolismo , Zea mays/parasitología , Animales , Factores Quimiotácticos/análisis , Factores Quimiotácticos/metabolismo , Femenino , Larva/parasitología , Odorantes/análisis , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Olfato , Terpenos/análisis , Terpenos/metabolismo , Volatilización
5.
Planta ; 222(1): 141-50, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15891900

RESUMEN

In the genus Petunia, distinct pollination syndromes may have evolved in association with bee-visitation (P. integrifolia spp.) or hawk moth-visitation (P. axillaris spp). We investigated the extent of congruence between floral fragrance and olfactory perception of the hawk moth Manduca sexta. Hawk moth pollinated P. axillaris releases high levels of several compounds compared to the bee-pollinated P. integrifolia that releases benzaldehyde almost exclusively. The three dominating compounds in P. axillaris were benzaldehyde, benzyl alcohol and methyl benzoate. In P. axillaris, benzenoids showed a circadian rhythm with an emission peak at night, which was absent from P. integrifolia. These characters were highly conserved among different P. axillaris subspecies and P. axillaris accessions, with some differences in fragrance composition. Electroantennogram (EAG) recordings using flower-blends of different wild Petunia species on female M. sexta antennae showed that P. axillaris odours elicited stronger responses than P. integrifolia odours. EAG responses were highest to the three dominating compounds in the P. axillaris flower odours. Further, EAG responses to odour-samples collected from P. axillaris flowers confirmed that odours collected at night evoked stronger responses from M. sexta than odours collected during the day. These results show that timing of odour emissions by P. axillaris is in tune with nocturnal hawk moth activity and that flower-volatile composition is adapted to the antennal perception of these pollinators.


Asunto(s)
Ritmo Circadiano/fisiología , Oscuridad , Flores/fisiología , Manduca/anatomía & histología , Manduca/fisiología , Odorantes/análisis , Petunia/fisiología , Animales , Flores/química , Petunia/química , Polen/fisiología
6.
Genetics ; 168(3): 1585-99, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15579709

RESUMEN

Animal-mediated pollination is essential in the reproductive biology of many flowering plants and tends to be associated with pollination syndromes, sets of floral traits that are adapted to particular groups of pollinators. The complexity and functional convergence of various traits within pollination syndromes are outstanding examples of biological adaptation, raising questions about their mechanisms and origins. In the genus Petunia, complex pollination syndromes are found for nocturnal hawkmoths (P. axillaris) and diurnal bees (P. integrifolia), with characteristic differences in petal color, corolla shape, reproductive organ morphology, nectar quantity, nectar quality, and fragrance. We dissected the Petunia syndromes into their most important phenotypic and genetic components. They appear to include several distinct differences, such as cell-growth and cell-division patterns in the basal third of the petals, elongation of the ventral stamens, nectar secretion and nectar sugar metabolism, and enzymatic differentiation in the phenylpropanoid pathway. In backcross-inbred lines of species-derived chromosome segments in a transposon tagging strain of P. hybrida, one to five quantitative trait loci were identified for each syndrome component. Two loci for stamen elongation and nectar volume were confirmed in introgression lines and showed large allelic differences. The combined data provide a framework for a detailed understanding of floral syndromes from their developmental and molecular basis to their impact on animal behavior. With its molecular genetic tools, this Petunia system provides a novel venue for a pattern of adaptive radiation that is among the most characteristic of flowering plants.


Asunto(s)
Flores/genética , Petunia/genética , Mapeo Cromosómico , Flores/fisiología , Ligamiento Genético , Petunia/fisiología , Fenotipo , Sitios de Carácter Cuantitativo
7.
J Chem Ecol ; 28(5): 951-68, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12049233

RESUMEN

Herbivore-induced plant volatiles can function as indirect defense signals that attract natural enemies of herbivores. Several parasitoids are known to exploit these plant-provided cues to locate their hosts. One such parasitoid is the generalist Cotesia marginiventris, which is, among others, attracted to maize volatiles induced by caterpillar damage. Maize plants can be induced to produce the same blend of attractive volatiles by treating them with regurgitant of Spodoptera species. We collected and analyzed the regurgitant-induced emissions of two plant species (cowpea and maize) and of eight Mexican maize varieties and found significant differences among their volatile emissions, both in terms of total quantity and the quality of the blends. In a Y-tube olfactometer. the odors of the same artificially induced plant species and Mexican varieties were offered in dual choice experiments to naive mated females of C. marginiventris. Wasps preferred cowpea over maize odor and, in 3 of 12 combinations with the maize varieties, they showed a preference for the odors of one of the varieties, A comparison of the odor collection with results from the behavioral assays indicates that not only the quantity of the volatile emissions, but also the quality (composition) of the volatile blends is important for attraction of C. marginiventris. The results are discussed in the context of the possibility of breeding crop varieties that are particularly attractive to parasitoids.


Asunto(s)
Himenópteros/fisiología , Odorantes , Zea mays/fisiología , Animales , Especificidad de la Especie , Volatilización , Zea mays/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA