Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 13(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38610851

RESUMEN

Background: The global rise of obesity and its association with cardiovascular risk factors (CVRF) have highlighted its connection to chronic heart failure (CHF). Paradoxically, obese CHF patients often experience better outcomes, a phenomenon known as the 'obesity paradox'. This study evaluated the 'obesity paradox' within a large cohort in Germany and explored how varying degrees of obesity affect HF outcome. Methods: Anonymized health claims data from the largest German insurer (AOK) for the years 2014-2015 were utilized to analyze 88,247 patients hospitalized for myocardial infarction. This analysis encompassed baseline characteristics, comorbidities, interventions, complications, and long-term outcomes, including overall survival, freedom from CHF, and CHF-related rehospitalization. Patients were categorized based on body mass index. Results: Obese patients encompassed 21.3% of our cohort (median age 68.69 years); they exhibited a higher prevalence of CVRF (p < 0.001) and comorbidities than non-obese patients (median age 70.69 years). Short-term outcomes revealed lower complication rates and mortality (p < 0.001) in obese compared to non-obese patients. Kaplan-Meier estimations for long-term analysis illustrated increased incidences of CHF and rehospitalization rates among the obese, yet with lower overall mortality. Multivariable Cox regression analysis indicated that obese individuals faced a higher risk of developing CHF and being rehospitalized due to CHF but demonstrated better overall survival for those classified as having low-level obesity (p < 0.001). Conclusions: This study underscores favorable short-term outcomes among obese individuals. The 'obesity paradox' was confirmed, with more frequent CHF cases and rehospitalizations in the long term, alongside better overall survival for certain degrees of obesity.

2.
Life Sci ; 309: 120998, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179815

RESUMEN

AIMS: Despite the high prevalence of heart failure with preserved ejection fraction (HFpEF), the pathomechanisms remain elusive and specific therapy is lacking. Disease-causing factors include metabolic risk, notably obesity. However, proteomic changes in HFpEF are poorly understood, hampering therapeutic strategies. We sought to elucidate how metabolic syndrome affects cardiac protein expression, phosphorylation and acetylation in the Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 (ZSF1) rat HFpEF model, and to evaluate changes regarding their potential for treatment. MAIN METHODS: ZSF1 obese and lean rats were fed a Purina diet up to the onset of HFpEF in the obese animals. We quantified the proteome, phosphoproteome and acetylome of ZSF1 obese versus lean heart tissues by mass spectrometry and singled out targets for site-specific evaluation. KEY FINDINGS: The acetylome of ZSF1 obese versus lean hearts was more severely altered (21 % of proteins changed) than the phosphoproteome (9 %) or proteome (3 %). Proteomic alterations, confirmed by immunoblotting, indicated low-grade systemic inflammation and endothelial remodeling in obese hearts, but low nitric oxide-dependent oxidative/nitrosative stress. Altered acetylation in ZSF1 obese hearts mainly affected pathways important for metabolism, energy production and mechanical function, including hypo-acetylation of mechanical proteins but hyper-acetylation of proteins regulating fatty acid metabolism. Hypo-acetylation and hypo-phosphorylation of elastic titin in ZSF1 obese hearts could explain myocardial stiffening. SIGNIFICANCE: Cardiometabolic syndrome alters posttranslational modifications, notably acetylation, in experimental HFpEF. Pathway changes implicate a HFpEF signature of low-grade inflammation, endothelial dysfunction, metabolic and mechanical impairment, and suggest titin stiffness and mitochondrial metabolism as promising therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca , Síndrome Metabólico , Ratas , Animales , Volumen Sistólico/fisiología , Conectina/metabolismo , Función Ventricular Izquierda/fisiología , Fosforilación , Ratas Zucker , Proteoma/metabolismo , Acetilación , Proteómica , Óxido Nítrico/metabolismo , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Inflamación/metabolismo , Procesamiento Proteico-Postraduccional , Ácidos Grasos
3.
Cardiovasc Res ; 118(14): 2903-2918, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662387

RESUMEN

The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.


Asunto(s)
Cardiomiopatías , Cardiopatías , Insuficiencia Cardíaca , Humanos , Conectina/genética , Conectina/metabolismo , Volumen Sistólico , Miocitos Cardíacos/metabolismo , Cardiomiopatías/metabolismo
4.
Sci Transl Med ; 13(618): eabd3079, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731013

RESUMEN

Heterozygous truncating variants in TTN (TTNtv), the gene coding for titin, cause dilated cardiomyopathy (DCM), but the underlying pathomechanisms are unclear and disease management remains uncertain. Truncated titin proteins have not yet been considered as a contributor to disease development. Here, we studied myocardial tissues from nonfailing donor hearts and 113 patients with end-stage DCM for titin expression and identified a TTNtv in 22 patients with DCM (19.5%). We directly demonstrate titin haploinsufficiency in TTNtv-DCM hearts and the absence of compensatory changes in the alternative titin isoform Cronos. Twenty-one TTNtv-DCM hearts in our cohort showed stable expression of truncated titin proteins. Expression was variable, up to half of the total titin protein pool, and negatively correlated with patient age at heart transplantation. Truncated titin proteins were not detected in sarcomeres but were present in intracellular aggregates, with deregulated ubiquitin-dependent protein quality control. We produced human induced pluripotent stem cell­derived cardiomyocytes (hiPSC-CMs), comparing wild-type controls to cells with a patient-derived, prototypical A-band-TTNtv or a CRISPR-Cas9­generated M-band-TTNtv. TTNtv-hiPSC-CMs showed reduced wild-type titin expression and contained truncated titin proteins whose proportion increased upon inhibition of proteasomal activity. In engineered heart muscle generated from hiPSC-CMs, depressed contractility caused by TTNtv could be reversed by correction of the mutation using CRISPR-Cas9, eliminating truncated titin proteins and raising wild-type titin content. Functional improvement also occurred when wild-type titin protein content was increased by proteasome inhibition. Our findings reveal the major pathomechanisms of TTNtv-DCM and can be exploited for new therapies to treat TTNtv-related cardiomyopathies.


Asunto(s)
Cardiomiopatías , Conectina , Trasplante de Corazón , Células Madre Pluripotentes Inducidas , Cardiomiopatías/genética , Conectina/genética , Conectina/metabolismo , Haploinsuficiencia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Miocitos Cardíacos/metabolismo , Donantes de Tejidos
5.
Amino Acids ; 52(3): 499-503, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32008093

RESUMEN

A direct inhibiting effect of NO on the function of CAT-1 and -2A has been postulated to occur via nitrosylation of cysteine residues in the transporters. Neither the NO donor SNAP nor a mixture of SIN-1 and Spermine NONOate, that generates the strong nitrosating agent N2O3, reduced CAT-mediated L-arginine transport. Direct nitros(yl)ation does either not occur in CATs or does not affect their transport function. A regulatory effect of NO or nitrosating agents on CAT-mediated transport under physiological conditions seems, therefore, unlikely.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Transportador de Aminoácidos Catiónicos 1/metabolismo , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Animales , Arginina/metabolismo , Humanos , Oocitos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...