Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(7): e0254118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34252116

RESUMEN

Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.


Asunto(s)
Detergentes/química , Ensayos Analíticos de Alto Rendimiento/métodos , Lípidos/análisis , Proteínas de la Membrana/química , Humanos , Nanopartículas/química , Estabilidad Proteica , Soluciones
2.
Chem Senses ; 36(5): 425-34, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21343241

RESUMEN

Monellin is a highly potent sweet-tasting protein but relatively little is known about how it interacts with the sweet taste receptor. We determined X-ray crystal structures of 3 single-chain monellin (MNEI) proteins with alterations at 2 core residues (G16A, V37A, and G16A/V37A) that induce 2- to 10-fold reductions in sweetness relative to the wild-type protein. Surprisingly, no changes were observed in the global protein fold or the positions of surface amino acids important for MNEI sweetness that could explain these differences in protein activity. Differential scanning calorimetry showed that while the thermal stability of each mutant MNEI was reduced, the least sweet mutant, G16A-MNEI, was not the least stable protein. In contrast, solution spectroscopic measurements revealed that changes in protein flexibility and the C-terminal structure correlate directly with protein activity. G16A mutation-induced disorder in the protein core is propagated via changes to hydrophobic interactions that disrupt the formation and/or position of a critical C-terminal poly-(L-proline) II helix. These findings suggest that MNEI interaction with the sweet taste receptor is highly sensitive to the relative positions of key residues across its protein surface and that loss of sweetness in G16A-MNEI may result from an increased entropic cost of binding.


Asunto(s)
Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Edulcorantes , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Mutación , Prolina/genética , Pliegue de Proteína , Estructura Secundaria de Proteína , Edulcorantes/química
3.
Mol Membr Biol ; 25(8): 631-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19023694

RESUMEN

Outer membrane proteins are structurally distinct from those that reside in the inner membrane and play important roles in bacterial pathogenicity and human metabolism. X-ray crystallography studies on >40 different outer membrane proteins have revealed that the transmembrane portion of these proteins can be constructed from either beta-sheets or less commonly from alpha-helices. The most common architecture is the beta-barrel, which can be formed from either a single anti-parallel sheet, fused at both ends to form a barrel or from multiple peptide chains. Outer membrane proteins exhibit considerable rigidity and stability, making their study through x-ray crystallography particularly tractable. As the number of structures of outer membrane proteins increases a more rational approach to their crystallization can be made. Herein we analyse the crystallization data from 53 outer membrane proteins and compare the results to those obtained for inner membrane proteins. A targeted sparse matrix screen for outer membrane protein crystallization is presented based on the present analysis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Cristalización/métodos , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Tampones (Química) , Cristalografía por Rayos X , Bases de Datos de Proteínas , Detergentes , Concentración de Iones de Hidrógeno , Polietilenglicoles , Conformación Proteica , Estructura Terciaria de Proteína , Sales (Química)
4.
Chem Senses ; 31(6): 505-13, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16621970

RESUMEN

Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.


Asunto(s)
Expresión Génica/genética , Receptores de Superficie Celular/aislamiento & purificación , Receptores de Superficie Celular/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Dicroismo Circular , Ligandos , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
5.
Curr Biol ; 15(21): 1948-52, 2005 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-16271873

RESUMEN

Animals utilize hundreds of distinct G protein-coupled receptor (GPCR)-type chemosensory receptors to detect a diverse array of chemical signals in their environment, including odors, pheromones, and tastants. However, the molecular mechanisms by which these receptors selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. Here, we report that each of the two subunits in the heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in behaving mice. Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.


Asunto(s)
Subunidades de Proteína/metabolismo , Receptores de Superficie Celular/fisiología , Receptores Acoplados a Proteínas G/fisiología , Edulcorantes/metabolismo , Gusto/fisiología , Animales , Cromatografía de Afinidad , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos/genética , Ligandos , Ratones , Mutagénesis Sitio-Dirigida , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína/genética , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores de Superficie Celular/genética , Receptores Acoplados a Proteínas G/genética , Espectrometría de Fluorescencia , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA