Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 32(6): e2619, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35384139

RESUMEN

Species distribution models (SDMs) have become an essential tool for the management and conservation of imperiled species. However, many at-risk species are rare and characterized by limited data on their spatial distribution and habitat relationships. This has led to the development of SDMs that integrate multiple types and sources of data to leverage more information and provide improved predictions of habitat associations. We developed a novel integrated species distribution model to predict habitat suitability for jaguars (Panthera onca) in the border region between northern Mexico and the southwestern USA. Our model combined presence-only and occupancy data to identify key environmental correlates, and we used model results to develop a probability of use map. We adopted a logistic regression modeling framework, which we found to be more straightforward and less computationally intensive to fit than Poisson point process-based models. Model results suggested that high terrain ruggedness and the presence of riparian vegetation were most strongly related to habitat use by jaguars in our study region. Our best model, on average, predicted that there is currently 25,463 km2 of usable habitat in our study region. The United States portion of the study region, which makes up 38.6% of the total area, contained 40.6% of the total usable habitat. Even though there have been few detections of jaguars in the southwestern USA in recent decades, our results suggest that protection of currently suitable habitats, along with increased conservation efforts, could significantly contribute to the recovery of jaguars in the USA.


Asunto(s)
Panthera , Animales , Conservación de los Recursos Naturales/métodos , Ecosistema , México , Densidad de Población
2.
Ecology ; 88(3): 658-70, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17503594

RESUMEN

Understanding the processes that control species abundance and distribution is a major challenge in ecology, yet for a large number of potentially important organisms, we know little about the biotic and abiotic factors that influence population size. One group of aquatic organisms that defies traditional demographic analyses is the Crustacea, particularly those with complex life cycles. We used likelihood techniques and information theoretics to evaluate a suite of models representing alternative hypotheses on factors controlling the abundance of two copepod crustaceans in a small, tropical floodplain lake. Quantitative zooplankton samples were collected at three stations in a Venezuelan floodplain lake from June through December 1984; the average sampling interval was two days. We constructed a series of models with stage structure that incorporated six biotic and abiotic covariates in various combinations to account for temporal changes in abundance of these target species and in their population growth rates. Our analysis produced several novel insights into copepod population dynamics. We found that multiple forces affected the abundance of particular stages, that these factors differed between species as well as among stages within each species, and that biotic processes had the largest effects on copepod population dynamics. Density dependence had a large effect on the survival of Oithona amazonica copepodites and on population growth rate of Diaptomus negrensis.


Asunto(s)
Copépodos/fisiología , Demografía , Ecosistema , Modelos Teóricos , Densidad de Población , Zooplancton/fisiología , Animales , Funciones de Verosimilitud , Dinámica Poblacional , Venezuela
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA