Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
F1000Res ; 11: 651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35949916

RESUMEN

Background: The environmental housing conditions of laboratory animals are important for both welfare and reliable, reproducible data. Guidelines currently exist for factors such as lighting cycles, temperature, humidity, and noise, however, for the latter the current guidelines may overlook important details. In the case of the most common laboratory species, the mouse, the range of frequencies they can hear is far higher than that of humans. The current guidelines briefly mention that ultrasonic (>20 kHz) frequencies can adversely affect mice, and that the acoustic environment should be checked, though no recommendations are provided relating to acceptable levels of ultrasonic noise. Methods: To investigate the ultrasonic environment in a large mouse breeding facility (the Mary Lyon Centre at MRC Harwell), we compared two systems, the Hottinger Bruel and Kjaer PULSE sound analyser, and an Avisoft Bioacoustics system. Potential noise sources were selected; we used the PULSE system to undertake real-time Fourier analysis of noise up to 100 kHz, and the Avisoft system to record noise up to 125 kHz for later analysis. The microphones from both systems were positioned consistently at the same distance from the source and environmental conditions were identical. In order to investigate our result further, a third system, the AudioMoth (Open Acoustic Devices), was also used for recording. We used DeepSqueak software for most of the recording analysis and, in some cases, we also undertook further spectral analysis using RX8 (iZotope, USA). Results: We found that both systems can detect a range of ultrasonic noise sources, and here discuss the benefits and limitations of each approach. Conclusions: We conclude that measuring the acoustic environment of animal facilities, including ultrasonic frequencies that may adversely affect the animals housed, will contribute to minimising disruption to animal welfare and perturbations in scientific research.


Asunto(s)
Ruido , Ultrasonido , Acústica , Animales , Humanos , Ratones , Ruido/efectos adversos
2.
Curr Protoc Mouse Biol ; 10(3): e80, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32813317

RESUMEN

Over the last century, the study of mouse behavior has uncovered insights into brain molecular mechanisms while revealing potential causes of many neurological disorders. To this end, researchers have widely exploited the use of mutant strains, including those generated in mutagenesis screens and those produced using increasingly sophisticated genome engineering technologies. It is now relatively easy to access mouse models carrying alleles that faithfully recapitulate changes found in human patients or bearing variants of genes that provide data on those genes' functions. Concurrent with these developments has been an appreciation of the limitations of some current testing platforms, especially those monitoring complex behaviors. Out-of-cage observational testing is useful in describing overt persistent phenotypes but risks missing sporadic or intermittent events. Furthermore, measuring the progression of a phenotype, potentially over many months, can be difficult while relying on assays that may be susceptible to changes in the testing environment. In recent years, there has also been increasing awareness that measurement of behaviors in isolation can be limiting, given that mice attempt to hide behavioral cues of vulnerability. To overcome these limitations, laboratory animal science is capitalizing on progress in data capture and processing expertise. Moreover, as additional recording modes become commonplace, ultrasonic vocalization recording is an appealing focus, as mice use vocalizations in various social contexts. Using video and audio technologies, we record the voluntary, unprovoked behaviors and vocalizations of mice in social groups. Adoption of these approaches is undoubtedly set to increase, as they capture the round-the-clock behavior of mouse strains. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Continuous recording of home cage activity using the Home Cage Analyzer (HCA) system Support Protocol: Subcutaneous insertion of a radio frequency identification microchip in the inguinal area Basic Protocol 2: Continuous recording of mouse ultrasonic vocalizations in the home cage.


Asunto(s)
Técnicas Genéticas , Vivienda para Animales , Ultrasonido , Vocalización Animal , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
3.
PLoS One ; 15(6): e0230162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32542000

RESUMEN

Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in group-housed adult male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and lameness. Contraction of digits and gait abnormalities were noted in multiple cases. Radiographical and histological examination revealed caudal dislocation of the calcaneus and partial dislocation of the calcaneoquartal (calcaneus-tarsal bone IV) joint. The detection, frequency, and cause of this pathology in five large mouse production and phenotyping centres (MRC Harwell, UK; The Jackson Laboratory, USA; The Centre for Phenogenomics, Canada; German Mouse Clinic, Germany; Baylor College of Medicine, USA) are discussed.


Asunto(s)
Crianza de Animales Domésticos/instrumentación , Internacionalidad , Huesos Tarsianos/lesiones , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Huesos Tarsianos/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
R Soc Open Sci ; 7(12): 201171, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33489271

RESUMEN

Maternal or early life effects may prepare offspring for similar social conditions to those experienced by their mothers. For males, the ability to achieve mating and fertilization success is a key social challenge. Competitive conditions may therefore favour increased body size or ejaculate production in male offspring. We tested this experimentally by comparing reproductive traits of adult male bank voles (Myodes glareolus), whose mothers had experienced contrasting encounter regimes with female conspecifics while breeding. We found that daily sperm production rates and epididymis mass were significantly higher when dams had experienced more frequent encounters with female conspecifics. This response to maternal and early life experience was specific to sperm production and storage, with no evidence for effects on male body mass or the size of testes and accessory reproductive glands. Our findings reveal a potentially adaptive effect of maternal and early life experience on the development of sperm production, which is worthy of wider investigation.

5.
Proc Biol Sci ; 283(1829)2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27097924

RESUMEN

Biparental care of offspring occurs in diverse mammalian genera and is particularly common among species with socially monogamous mating systems. Despite numerous well-documented examples, however, the evolutionary causes and consequences of paternal care in mammals are not well understood. Here, we investigate the evolution of paternal care in relation to offspring production. Using comparative analyses to test for evidence of evolutionary associations between male care and life-history traits, we explore if biparental care is likely to have evolved because of the importance of male care to offspring survival, or if evolutionary increases in offspring production are likely to result from the evolution of biparental care. Overall, we find no evidence that paternal care has evolved in response to benefits of supporting females to rear particularly costly large offspring or litters. Rather, our findings suggest that increases in offspring production are more likely to follow the evolution of paternal care, specifically where males contribute depreciable investment such as provisioning young. Through coevolution with litter size, we conclude that paternal care in mammals is likely to play an important role in stabilizing monogamous mating systems and could ultimately promote the evolution of complex social behaviours.


Asunto(s)
Evolución Biológica , Tamaño de la Camada/fisiología , Mamíferos/fisiología , Conducta Paterna/fisiología , Animales , Animales Recién Nacidos , Femenino , Fertilidad , Masculino , Filogenia , Embarazo , Conducta Sexual Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...