Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37461440

RESUMEN

Spinal cord injury ( SCI ) leads to hyperexcitability and dysfunction in spinal sensory processing. As hyperexcitable circuits can become epileptiform elsewhere, we explored whether such activity emerges in spinal sensory circuits in a thoracic SCI contusion model of neuropathic pain. Recordings from spinal sensory axons in multiple below-lesion segmental dorsal roots ( DRs ) demonstrated that SCI facilitated the emergence of spontaneous ectopic burst spiking in afferent axons, which synchronized across multiple adjacent DRs. Burst frequency correlated with behavioral mechanosensitivity. The same bursting events were recruited by afferent stimulation, and timing interactions with ongoing spontaneous bursts revealed that recruitment was limited by a prolonged post-burst refractory period. Ectopic bursting in afferent axons was driven by GABA A receptor activation, presumably via shifting subthreshold GABAergic interneuronal presynaptic axoaxonic inhibitory actions to suprathreshold spiking. Collectively, the emergence of stereotyped bursting circuitry with hypersynchrony, sensory input activation, post-burst refractory period, and reorganization of connectivity represent defining features of epileptiform networks. Indeed, these same features were reproduced in naïve animals with the convulsant 4-aminopyridine ( 4-AP ). We conclude that SCI promotes the emergence of epileptiform activity in spinal sensory networks that promotes profound corruption of sensory signaling. This corruption includes downstream actions driven by ectopic afferent bursts that propagate via reentrant central and peripheral projections and GABAergic presynaptic circuit hypoexcitability during the refractory period.

2.
J Neurotrauma ; 40(23-24): 2654-2666, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37212274

RESUMEN

Abstract Spinal cord injury (SCI) can induce dysfunction in a multitude of neural circuits including those that lead to impaired sleep, respiratory dysfunction, and neuropathic pain. We used a lower thoracic rodent contusion SCI model of neuropathic pain that has been shown to associate with increased spontaneous activity in primary afferents and hindlimb mechanosensory stimulus hypersensitivity. Here we paired capture of these variables with chronic capture of three state sleep and respiration to more broadly understand SCI-induced physiological dysfunction and to assess possible interrelations. Noncontact electric field sensors were embedded into home cages to non-invasively capture the temporal evolution of sleep and respiration changes for six weeks after SCI in naturally behaving mice. Hindlimb mechanosensitivity was assessed weekly, and terminal experiments measured primary afferent spontaneous activity in situ from intact lumbar dorsal root ganglia (DRG). We observed that SCI led to increased spontaneous primary afferent activity (both firing rate and the number of spontaneously active DRGs) that correlated with increased respiratory rate variability and measures of sleep fragmentation. This is the first study to measure and link sleep dysfunction and variability in respiratory rate in a SCI model of neuropathic pain, and thereby provide broader insight into the magnitude of overall stress burden initiated by neural circuit dysfunction after SCI.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Traumatismos Vertebrales , Ratones , Animales , Neuralgia/etiología , Traumatismos de la Médula Espinal/complicaciones , Médula Espinal , Sueño , Ganglios Espinales
3.
Bio Protoc ; 11(20): e4189, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34761062

RESUMEN

The thoracic paravertebral sympathetic chain postganglionic neurons (tSPNs) represent the predominant sympathetic control of vascular function in the trunk and upper extremities. tSPNs cluster to form ganglia linked by an interganglionic nerve and receive multisegmental convergent and divergent synaptic input from cholinergic sympathetic preganglionic neurons of the spinal cord (Blackman and Purves, 1969; Lichtman et al., 1980 ). Studies in the past have focused on cervical and lumbar chain ganglia in multiple species, but few have examined the thoracic chain ganglia, whose location and diminutive size make them less conducive to experimentation. Seminal studies on the integrative properties of preganglionic axonal projections onto tSPNs were performed in guinea pig (Blackman and Purves, 1969; Lichtman et al., 1980 ), but as mice have become the accepted mammalian genetic model organism, there is need to reproduce and expand on these studies in this smaller model. We describe an ex vivo approach that enables electrophysiological, calcium imaging, and optogenetic assessment of convergence, divergence, and studies on pre- to postganglionic synaptic transmission, as well as whole-cell recordings from individual tSPNs. Preganglionic axonal connections from intact ventral roots and interganglionic nerves across multiple segments can be stimulated to evoke compound action potential responses in individual thoracic ganglia as recorded with suction electrodes. Chemical block of synaptic transmission differentiates spiking of preganglionic axons from synaptically-recruited tSPNs. Further dissection, including removal of the sympathetic chain, enables whole-cell patch clamp recordings from individual tSPNs for characterization of cellular and synaptic properties.

4.
J Neurophysiol ; 125(2): 568-585, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326305

RESUMEN

Somatosensory input strength can be modulated by primary afferent depolarization (PAD) generated predominantly via presynaptic GABAA receptors on afferent terminals. We investigated whether ionotropic nicotinic acetylcholine receptors (nAChRs) also provide modulatory actions, focusing on myelinated afferent excitability in in vitro murine spinal cord nerve-attached models. Primary afferent stimulation-evoked synaptic transmission was recorded in the deep dorsal horn as extracellular field potentials (EFPs), whereas concurrently recorded dorsal root potentials (DRPs) were used as an indirect measure of PAD. Changes in afferent membrane excitability were simultaneously measured as direct current (DC)-shifts in membrane polarization recorded in dorsal roots or peripheral nerves. The broad nAChR antagonist d-tubocurarine (d-TC) selectively and strongly depressed Aδ-evoked synaptic EFPs (36% of control) coincident with similarly depressed A-fiber DRP (43% of control), whereas afferent electrical excitability remained unchanged. In comparison, acetylcholine (ACh) and the nAChR agonists, epibatidine and nicotine, reduced afferent excitability by generating coincident depolarizing DC-shifts in peripheral axons and intraspinally. Progressive depolarization corresponded temporally with the emergence of spontaneous axonal spiking and reductions in the DRP and all afferent-evoked synaptic actions (31%-37% of control). Loss of evoked response was long-lasting, independent of DC repolarization, and likely due to mechanisms initiated by spontaneous C-fiber activity. DC-shifts were blocked with d-TC but not GABAA receptor blockers and retained after tetrodotoxin block of voltage-gated Na+ channels. Notably, actions tested were comparable between three mouse strains, in rat, and when performed in different labs. Thus, nAChRs can regulate afferent excitability via two distinct mechanisms: by central Aδ-afferent actions, and by transient extrasynaptic axonal activation of high-threshold primary afferents.NEW & NOTEWORTHY Primary afferents express many nicotinic ACh receptor (nAChR) subtypes but whether activation is linked to presynaptic inhibition, facilitation, or more complex and selective activity modulation is unknown. Recordings of afferent-evoked responses in the lumbar spinal cord identified two nAChR-mediated modulatory actions: 1) selective control of Aδ afferent transmission and 2) robust changes in axonal excitability initiated via extrasynaptic shifts in DC polarization. This work broadens the diversity of presynaptic modulation of primary afferents by nAChRs.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas Aferentes/metabolismo , Receptores Nicotínicos/metabolismo , Potenciales Sinápticos , Animales , Ganglios Espinales/citología , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos BALB C , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Agonistas Nicotínicos/farmacología , Antagonistas Nicotínicos/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/clasificación
5.
Neurosci Lett ; 736: 135257, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32682848

RESUMEN

Somatosensory information can be modulated at the spinal cord level by primary afferent depolarization (PAD), known to produce presynaptic inhibition (PSI) by decreasing neurotransmitter release through the activation of presynaptic ionotropic receptors. Descending monoaminergic systems also modulate somatosensory processing. We investigated the role of D1-like and D2-like receptors on pathways mediating PAD in the hemisected spinal cord of neonatal mice. We recorded low-threshold evoked dorsal root potentials (DRPs) and population monosynaptic responses as extracellular field potentials (EFPs). We used a paired-pulse conditioning-test protocol to assess homosynaptic and heterosynaptic depression of evoked EFPs to discriminate between dopaminergic effects on afferent synaptic efficacy and/or on pathways mediating PAD, respectively. DA (10 µM) depressed low-threshold evoked DRPs by 43 %, with no effect on EFPs. These depressant effects on DRPs were mimicked by the D2-like receptor agonist quinpirole (35 %). Moreover, by using selective antagonists at D2-like receptors (encompassing the D2, D3, and D4 subtypes), we found that the D2 and D3 receptor subtypes participate in the quinpirole depressant inhibitory effects of pathways mediating PAD.


Asunto(s)
Inhibición Neural/fisiología , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Médula Espinal/metabolismo , Transmisión Sináptica/fisiología , Animales , Potenciales Postsinápticos Excitadores , Ratones , Vías Nerviosas/metabolismo , Neuronas Aferentes/metabolismo , Receptores Presinapticos/metabolismo
6.
Exp Brain Res ; 238(5): 1293-1303, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32322928

RESUMEN

Somatosensory afferent transmission strength is controlled by several presynaptic mechanisms that reduce transmitter release at the spinal cord level. We focused this investigation on the role of α-adrenoceptors in modulating sensory transmission in low-threshold myelinated afferents and in pathways mediating primary afferent depolarization (PAD) of neonatal mouse spinal cord. We hypothesized that the activation of α-adrenoceptors depresses low threshold-evoked synaptic transmission and inhibits pathways mediating PAD. Extracellular field potentials (EFPs) recorded in the deep dorsal horn assessed adrenergic modulation of population monosynaptic transmission, while dorsal root potentials (DRPs) recorded at root entry zone assessed adrenergic modulation of PAD. We found that noradrenaline (NA) and the α1-adrenoceptor agonists phenylephrine and cirazoline depressed synaptic transmission (by 15, 14 and 22%, respectively). DRPs were also depressed by NA, phenylephrine and cirazoline (by 62, 30, and 64%, respectively), and by the α2-adrenoceptor agonist clonidine, although to a lower extent (20%). We conclude that NA depresses monosynaptic transmission of myelinated afferents onto deep dorsal horn neurons via α1-adrenoceptors and inhibits interneuronal pathways mediating PAD through the activation of α1- and α2-adrenoceptors. The functional significance of these modulatory actions in shaping cutaneous and muscle sensory information during motor behaviors requires further study.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Fenómenos Electrofisiológicos/fisiología , Fibras Nerviosas Mielínicas/fisiología , Neuronas Aferentes/fisiología , Receptores Adrenérgicos alfa 1/fisiología , Receptores Adrenérgicos alfa 2/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Fenómenos Electrofisiológicos/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Vías Nerviosas/fisiología , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
7.
Front Physiol ; 10: 1176, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572221

RESUMEN

Control of respiration provides a powerful voluntary portal to entrain and modulate central autonomic networks. Slowing and deepening breathing as a relaxation technique has shown promise in a variety of cardiorespiratory and stress-related disorders, but few studies have investigated the physiological mechanisms conferring its benefits. Recent evidence suggests that breathing at a frequency near 0.1 Hz (6 breaths per minute) promotes behavioral relaxation and baroreflex resonance effects that maximize heart rate variability. Breathing around this frequency appears to elicit resonant and coherent features in neuro-mechanical interactions that optimize physiological function. Here we explore the neurophysiology of slow, deep breathing and propose that coincident features of respiratory and baroreceptor afferent activity cycling at 0.1 Hz entrain central autonomic networks. An important role is assigned to the preferential recruitment of slowly-adapting pulmonary afferents (SARs) during prolonged inhalations. These afferents project to discrete areas in the brainstem within the nucleus of the solitary tract (NTS) and initiate inhibitory actions on downstream targets. Conversely, deep exhalations terminate SAR activity and activate arterial baroreceptors via increases in blood pressure to stimulate, through NTS projections, parasympathetic outflow to the heart. Reciprocal SAR and baroreceptor afferent-evoked actions combine to enhance sympathetic activity during inhalation and parasympathetic activity during exhalation, respectively. This leads to pronounced heart rate variability in phase with the respiratory cycle (respiratory sinus arrhythmia) and improved ventilation-perfusion matching. NTS relay neurons project extensively to areas of the central autonomic network to encode important features of the breathing pattern that may modulate anxiety, arousal, and attention. In our model, pronounced respiratory rhythms during slow, deep breathing also support expression of slow cortical rhythms to induce a functional state of alert relaxation, and, via nasal respiration-based actions on olfactory signaling, recruit hippocampal pathways to boost memory consolidation. Collectively, we assert that the neurophysiological processes recruited during slow, deep breathing enhance the cognitive and behavioral therapeutic outcomes obtained through various mind-body practices. Future studies are required to better understand the physio-behavioral processes involved, including in animal models that control for confounding factors such as expectancy biases.

8.
J Neurophysiol ; 122(4): 1406-1420, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31339796

RESUMEN

Spinal cord stimulation (SCS) is used clinically to limit chronic pain, but fundamental questions remain on the identity of axonal populations recruited. We developed an ex vivo adult mouse spinal cord preparation to assess recruitment following delivery of clinically analogous stimuli determined by downscaling a finite element model of clinical SCS. Analogous electric field distributions were generated with 300-µm × 300-µm electrodes positioned 200 µm above the dorsal column (DC) with stimulation between 50 and 200 µA. We compared axonal recruitment using electrodes of comparable size and stimulus amplitudes when contacting the caudal thoracic DC and at 200 or 600 µm above. Antidromic responses recorded distally from the DC, the adjacent Lissauer tract (LT), and in dorsal roots (DRs) were found to be amplitude and site dependent. Responses in the DC included a unique component not seen in DRs, having the lowest SCS recruitment amplitude and fastest conduction velocity. At 200 µm above, mean cathodic SCS recruitment threshold for axons in DRs and LT were 2.6 and 4.4 times higher, respectively, than DC threshold. SCS recruited primary afferents in all (up to 8) caudal segments sampled. Whereas A and C fibers could be recruited at nearby segments, only A fiber recruitment and synaptically mediated dorsal root reflexes were observed in more distant (lumbar) segments. In sum, clinically analogous SCS led to multisegmental recruitment of several somatosensory-encoding axonal populations. Most striking is the possibility that the lowest threshold recruitment of a nonprimary afferent population in the DC are postsynaptic dorsal column tract cells (PSDCs) projecting to gracile nuclei.NEW & NOTEWORTHY Spinal cord stimulation (SCS) is used clinically to control pain. To identify axonal populations recruited, finite element modeling identified scaling parameters to deliver clinically analogous SCS in an ex vivo adult mouse spinal cord preparation. Results showed that SCS first recruited an axonal population in the dorsal column at a threshold severalfold lower than primary afferents. These putative postsynaptic dorsal column tract cells may represent a previously unconsidered population responsible for SCS-induced paresthesias necessary for analgesia.


Asunto(s)
Axones/fisiología , Dolor de Espalda/terapia , Modelos Neurológicos , Estimulación de la Médula Espinal/métodos , Animales , Axones/clasificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Aferentes/fisiología , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/fisiopatología , Estimulación de la Médula Espinal/instrumentación
9.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040159

RESUMEN

Thoracic paravertebral sympathetic postganglionic neurons (tSPNs) comprise the final integrative output of the distributed sympathetic nervous system controlling vascular and thermoregulatory systems. Considered a non-integrating relay, what little is known of tSPN intrinsic excitability has been determined by sharp microelectrodes with presumed impalement injury. We thus undertook the first electrophysiological characterization of tSPN cellular properties using whole-cell recordings and coupled results with a conductance-based model to explore the principles governing their excitability in adult mice of both sexes. Recorded membrane resistance and time constant values were an order of magnitude greater than values previously obtained, leading to a demonstrable capacity for synaptic integration in driving recruitment. Variation in membrane resistivity was the primary determinant controlling cell excitability with vastly lower currents required for tSPN recruitment. Unlike previous microelectrode recordings in mouse which observed inability to sustain firing, all tSPNs were capable of repetitive firing. Computational modeling demonstrated that observed differences are explained by introduction of a microelectrode impalement injury conductance. Overall, tSPNs largely linearly encoded injected current magnitudes over a broad frequency range with distinct subpopulations differentiable based on repetitive firing signatures. Thus, whole-cell recordings reveal tSPNs have more dramatically amplified excitability than previously thought, with greater intrinsic capacity for synaptic integration and with the ability for maintained firing to support sustained actions on vasomotor tone and thermoregulatory function. Rather than acting as a relay, these studies support a more responsive role and possible intrinsic capacity for tSPNs to drive sympathetic autonomic function.


Asunto(s)
Potenciales de la Membrana/fisiología , Modelos Neurológicos , Fibras Simpáticas Posganglionares/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1604-1607, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440699

RESUMEN

Unobtrusive monitoring of physio-behavioral variables from animals can minimize variability in preclinical research and thereby maximize the potential for clinical translation. In this paper, we present the design, implementation, and validation of an instrumented nest providing continuous recordings of seismocardiogram (SCG) signals and skin temperature. SCG represents the chest-wall vibrations associated with the heartbeat, and can potentially provide a measure by which individual heartbeats can be detected without the need for electrodes or implantable devices. A non-contact electric field sensor placed in proximity to the animal in the nest was also used to detect respiratory dynamics. The setup was tested with a total of six anesthetized mice. To understand the effects of mouse positioning within the nest on signal quality, the error in heartbeat detection at different positions of the sensor on the body was quantified, with a simultaneously-obtained electrocardiogram (ECG) as the reference standard. At the optimal placement determined with this approach, multiple perturbations were performed such as pinching, changing ambient temperature, and norepinephrine injection to modulate physiology and assess measurement capability. Heartbeat intervals obtained from the ECG and SCG during the perturbations were correlated (R2=0.82) and were in agreement according to Bland-Altman methods (bias: 0.006ms, 95% confidence interval: [-3.79, 3.78]ms) suggesting that SCG can be reliably used for unobtrusive heartbeat detection. Accordingly, the setup can provide a means by which individual heartbeats - and thereby heart rate and heart rate variability indices - can be quantified without the need for any sensors to be attached to the body of the animal.


Asunto(s)
Pruebas de Función Cardíaca/instrumentación , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador , Vibración , Animales , Electrocardiografía , Ratones
12.
Front Physiol ; 8: 854, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163199

RESUMEN

In humans, exercises involving slowed respiratory rate (SRR) counter autonomic sympathetic bias and reduce responses to stressors, including in individuals with various degrees of autonomic dysfunction. In the rat, we examined whether operant conditioning could lead to reductions in respiratory rate (RR) and performed preliminary studies to assess whether conditioned SRR was sufficient to decrease physiological and behavioral responsiveness to stressors. RR was continuously monitored during 20 2-h sessions using whole body plethysmography. SRR conditioned, but not yoked control rats, were able to turn off aversive visual stimulation (intermittent bright light) by slowing their breathing below a preset target of 80 breaths/min. SRR conditioned rats greatly increased the incidence of breaths below the target RR over training, with average resting RR decreasing from 92 to 81 breaths/min. These effects were significant as a group and vs. yoked controls. Preliminary studies in a subset of conditioned rats revealed behavioral changes suggestive of reduced reactivity to stressful and nociceptive stimuli. In these same rats, intermittent sessions without visual reinforcement and a post-training priming stressor (acute restraint) demonstrated that conditioned rats retained reduced RR vs. controls in the absence of conditioning. In conclusion, we present the first successful attempt to operantly condition reduced RR in an animal model. Although further studies are needed to clarify the physio-behavioral concomitants of slowed breathing, the developed model may aid subsequent neurophysiological inquiries on the role of slow breathing in stress reduction.

13.
J Neurophysiol ; 118(6): 2956-2974, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855288

RESUMEN

Mapping the expression of transcription factors in the mouse spinal cord has identified ten progenitor domains, four of which are cardinal classes of molecularly defined, ventrally located interneurons that are integrated in the locomotor circuitry. This review focuses on the properties of these interneuronal populations and their contribution to hindlimb locomotor central pattern generation. Interneuronal populations are categorized based on their excitatory or inhibitory functions and their axonal projections as predictors of their role in locomotor rhythm generation and coordination. The synaptic connectivity and functions of these interneurons in the locomotor central pattern generators (CPGs) have been assessed by correlating their activity patterns with motor output responses to rhythmogenic neurochemicals and sensory and descending fibers stimulations as well as analyzing kinematic gait patterns in adult mice. The observed complex organization of interneurons in the locomotor CPG circuitry, some with seemingly similar physiological functions, reflects the intricate repertoire associated with mammalian motor control and is consistent with high transcriptional heterogeneity arising from cardinal interneuronal classes. This review discusses insights derived from recent studies to describe innovative approaches and limitations in experimental model systems and to identify missing links in current investigational enterprise.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Interneuronas/fisiología , Locomoción , Médula Espinal/fisiología , Animales , Generadores de Patrones Centrales/citología , Interneuronas/clasificación , Ratones , Médula Espinal/citología , Potenciales Sinápticos
14.
J Neurosci Methods ; 277: 88-100, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993527

RESUMEN

BACKGROUND: Numerous environmental and genetic factors can contribute significantly to behavioral and cardiorespiratory variability observed experimentally. Affordable technologies that allow for noninvasive home cage capture of physio-behavioral variables should enhance understanding of inter-animal variability including after experimental interventions. NEW METHOD: We assessed whether EPIC electric field sensors (Plessey Semiconductors) embedded within or attached externally to a rodent's home cage could accurately record respiration, heart rate, and motor behaviors. COMPARISON WITH EXISTING METHODS: Current systems for quantification of behavioral variables require expensive specialty equipment, while measures of respiratory and heart rate are often provided by surgically implanted or chronically affixed devices. RESULTS: Sensors accurately encoded imposed sinusoidal changes in electric field tested at frequencies ranging from 0.5-100Hz. Mini-metronome arm movements were easily detected, but response magnitude was highly distance dependent. Sensors accurately reported respiration during whole-body plethysmography. In anesthetized rodents, PVC tube-embedded sensors provided accurate mechanical detection of both respiratory and heart rate. Comparable success was seen in naturally behaving animals at rest or sleeping when sensors were attached externally. Video-verified motor behaviors (sniffing, grooming, chewing, and rearing) were detectable and largely separable by their characteristic voltage fluctuations. Larger movement-related events had comparably larger voltage dynamics that easily allowed for a broad approximation of overall motor activity. Spectrograms were used to quickly depict characteristic frequencies in long-lasting recordings, while filtering and thresholding software allowed for detection and quantification of movement-related physio-behavioral events. CONCLUSIONS: EPIC electric field sensors provide a means for affordable non-contact home cage detection of physio-behavioral variables.


Asunto(s)
Técnicas Biosensibles , Frecuencia Cardíaca/fisiología , Actividad Motora/fisiología , Respiración , Conducta Estereotipada/fisiología , Animales , Electrocardiografía , Masculino , Ratas , Ratas Sprague-Dawley , Pruebas de Función Respiratoria , Procesamiento de Señales Asistido por Computador
16.
Front Neural Circuits ; 8: 134, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426030

RESUMEN

The trace amines (TAs), tryptamine, tyramine, and ß-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na(+)-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na(+)-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function.


Asunto(s)
Locomoción/fisiología , Fenetilaminas/metabolismo , Médula Espinal/fisiología , Triptaminas/metabolismo , Tiramina/metabolismo , Animales , Animales Recién Nacidos , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Monoaminas Biogénicas/metabolismo , Generadores de Patrones Centrales/efectos de los fármacos , Generadores de Patrones Centrales/fisiología , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , N-Metilaspartato/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Médula Espinal/efectos de los fármacos , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/fisiología , Triptaminas/biosíntesis , Tiramina/biosíntesis
17.
J Vis Exp ; (91): 51948, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25285602

RESUMEN

Muscle sensory neurons innervating muscle spindles and Golgi tendon organs encode length and force changes essential to proprioception. Additional afferent fibers monitor other characteristics of the muscle environment, including metabolite buildup, temperature, and nociceptive stimuli. Overall, abnormal activation of sensory neurons can lead to movement disorders or chronic pain syndromes. We describe the isolation of the extensor digitorum longus (EDL) muscle and nerve for in vitro study of stretch-evoked afferent responses in the adult mouse. Sensory activity is recorded from the nerve with a suction electrode and individual afferents can be analyzed using spike sorting software. In vitro preparations allow for well controlled studies on sensory afferents without the potential confounds of anesthesia or altered muscle perfusion. Here we describe a protocol to identify and test the response of muscle spindle afferents to stretch. Importantly, this preparation also supports the study of other subtypes of muscle afferents, response properties following drug application and the incorporation of powerful genetic approaches and disease models in mice.


Asunto(s)
Músculo Esquelético/inervación , Unión Neuromuscular/fisiología , Neuronas Aferentes/fisiología , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Animales , Técnicas In Vitro , Ratones , Husos Musculares/inervación
18.
PLoS One ; 9(2): e89999, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24587177

RESUMEN

Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD). PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT), dopamine (DA) and noradrenaline (NA) on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs) or intracellular excitatory postsynaptic currents (EPSCs). The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs) recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75%) but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic transmission in the dorsal horn are broadly reduced by descending monoamine transmitters. These actions likely integrate with modulatory actions elsewhere to reconfigure spinal circuits during motor behaviors.


Asunto(s)
Dopamina/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Norepinefrina/farmacología , Serotonina/farmacología , Médula Espinal/efectos de los fármacos , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Miembro Posterior , Ratones , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Inhibición Neural/fisiología , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
19.
Ann N Y Acad Sci ; 1279: 103-13, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23531008

RESUMEN

Afferent feedback alters muscle activity during locomotion and must be tightly controlled. As primary afferent depolarization-induced presynaptic inhibition (PAD-PSI) regulates afferent signaling, we investigated hindlimb PAD-PSI during locomotion in an in vitro rat spinal cord-hindlimb preparation. We compared the relation of PAD-PSI, measured as dorsal root potentials (DRPs), to observed ipsilateral and contralateral limb endpoint forces. Afferents activated during stance-phase force strongly and proportionately influenced DRP magnitude in the swinging limb. Responses increased with locomotor frequency. Electrical stimulation of contralateral afferents also preferentially evoked DRPs in the opposite limb during swing (flexion). Nerve lesioning, in conjunction with kinematic results, support a prominent contribution from toe Golgi tendon organ afferents. Thus, force-dependent afferent feedback during stance binds interlimb sensorimotor state to a proportional PAD-PSI in the swinging limb, presumably to optimize interlimb coordination. These results complement known actions of ipsilateral afferents on PAD-PSI during locomotion.


Asunto(s)
Lateralidad Funcional/fisiología , Miembro Posterior/inervación , Locomoción/fisiología , Inhibición Neural/fisiología , Neuronas Aferentes/fisiología , Postura/fisiología , Células Receptoras Sensoriales/fisiología , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Estimulación Eléctrica , Gravitación , Miembro Posterior/citología , Miembro Posterior/fisiología , Humanos , Modelos Biológicos , Neuronas Aferentes/citología , Equilibrio Postural/fisiología , Ratas , Células Receptoras Sensoriales/citología , Médula Espinal/citología , Médula Espinal/fisiología
20.
PLoS One ; 7(11): e47213, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144807

RESUMEN

Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative modulatory response on spinal autonomic and somatic function.


Asunto(s)
Dopamina/metabolismo , Norepinefrina/metabolismo , Serotonina/metabolismo , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Potenciales Evocados , Ganglios Espinales/fisiología , Ganglios Simpáticos/fisiología , Ratones , Neuronas Eferentes/fisiología , Raíces Nerviosas Espinales/fisiología , Nervios Esplácnicos/fisiología , Aferentes Viscerales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...