Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Res Sq ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38562857

RESUMEN

Calorie restriction (CR) provides anti-aging benefits through diverse processes, such as reduced metabolism and growth and increased mitochondrial activity. Although controversy still exists regarding CR-mediated lifespan effects, many researchers are seeking interventions that mimic the effects of CR. Yeast has proven to be a useful model system for aging studies, including CR effects. We report here that yeast adapted through in vitro evolution to the severe cellular stress caused by loss of the Ulp2 SUMO-specific protease exhibit both enhanced growth rates and replicative lifespan, and they have altered gene expression profiles similar to those observed in CR. Notably, in certain evolved ulp2Δ lines, a dramatic increase in the auto-sumoylation of Ubc9 E2 SUMO-conjugating enzyme results in altered regulation of multiple targets involved in energy metabolism and translation at both transcriptional and post-translational levels. This increase is essential for the survival of aged cells and CR-mediated lifespan extension. Thus, we suggest that high Ubc9 auto-sumoylation exerts potent anti-aging effects by promoting efficient energy metabolism-driven improvements in cell replication abilities. This potential could be therapeutically explored for the development of novel CR-mimetic strategies.

2.
Sci Rep ; 14(1): 2048, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267508

RESUMEN

In eukaryotes, the ubiquitin-proteasome system is an essential pathway for protein degradation and cellular homeostasis. 26S proteasomes concentrate in the nucleus of budding yeast Saccharomyces cerevisiae due to the essential import adaptor protein Sts1 and the karyopherin-α protein Srp1. Here, we show that Sts1 facilitates proteasome nuclear import by recruiting proteasomes to the karyopherin-α/ß heterodimer. Following nuclear transport, the karyopherin proteins are likely separated from Sts1 through interaction with RanGTP in the nucleus. RanGTP-induced release of Sts1 from the karyopherin proteins initiates Sts1 proteasomal degradation in vitro. Sts1 undergoes karyopherin-mediated nuclear import in the absence of proteasome interaction, but Sts1 degradation in vivo is only observed when proteasomes successfully localize to the nucleus. Sts1 appears to function as a proteasome import factor during exponential growth only, as it is not found in proteasome storage granules (PSGs) during prolonged glucose starvation, nor does it appear to contribute to the rapid nuclear reimport of proteasomes following glucose refeeding and PSG dissipation. We propose that Sts1 acts as a single-turnover proteasome nuclear import factor by recruiting karyopherins for transport and undergoing subsequent RanGTP-initiated ubiquitin-independent proteasomal degradation in the nucleus.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales , alfa Carioferinas , beta Carioferinas , Glucosa , Carioferinas , Complejo de la Endopetidasa Proteasomal , Ubiquitina
3.
Nat Commun ; 14(1): 7719, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012152

RESUMEN

Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Replicación del ADN/genética , Longevidad/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Annu Rev Microbiol ; 77: 299-316, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285552

RESUMEN

Among endosymbiotic bacteria living within eukaryotic cells, Wolbachia is exceptionally widespread, particularly in arthropods. Inherited through the female germline, it has evolved ways to increase the fraction of bacterially infected offspring by inducing parthenogenesis, feminization, male killing, or, most commonly, cytoplasmic incompatibility (CI). In CI, Wolbachia infection of males causes embryonic lethality unless they mate with similarly infected females, creating a relative reproductive advantage for infected females. A set of related Wolbachia bicistronic operons encodes the CI-inducing factors. The downstream gene encodes a deubiquitylase or nuclease and is responsible for CI induction by males, while the upstream product when expressed in females binds its sperm-introduced cognate partner and rescues viability. Both toxin-antidote and host-modification mechanisms have been proposed to explain CI. Interestingly, male killing by either Spiroplasma or Wolbachia endosymbionts involves deubiquitylases as well. Interference with the host ubiquitin system may therefore be a common theme among endosymbiont-mediated reproductive alterations.


Asunto(s)
Wolbachia , Femenino , Masculino , Humanos , Wolbachia/genética , Semen , Reproducción/genética , Citoplasma , Biología Molecular , Simbiosis
5.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37364278

RESUMEN

Yeast and humans share thousands of genes despite a billion years of evolutionary divergence. While many human genes can functionally replace their yeast counterparts, nearly half of the tested shared genes cannot. For example, most yeast proteasome subunits are "humanizable," except subunits comprising the ß-ring core, including ß2c (HsPSMB7, a constitutive proteasome subunit). We developed a high-throughput pipeline to humanize yeast proteasomes by generating a large library of Hsß2c mutants and screening them for complementation of a yeast ß2 (ScPup1) knockout. Variants capable of replacing ScPup1 included (1) those impacting local protein-protein interactions (PPIs), with most affecting interactions between the ß2c C-terminal tail and the adjacent ß3 subunit, and (2) those affecting ß2c proteolytic activity. Exchanging the full-length tail of human ß2c with that of ScPup1 enabled complementation. Moreover, wild-type human ß2c could replace yeast ß2 if human ß3 was also provided. Unexpectedly, yeast proteasomes bearing a catalytically inactive HsPSMB7-T44A variant that blocked precursor autoprocessing were viable, suggesting an intact propeptide stabilizes late assembly intermediates. In contrast, similar modifications in human ß2i (HsPSMB10), an immunoproteasome subunit and the co-ortholog of yeast ß2, do not enable complementation in yeast, suggesting distinct interactions are involved in human immunoproteasome core assembly. Broadly, our data reveal roles for specific PPIs governing functional replaceability across vast evolutionary distances.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Saccharomyces cerevisiae , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Saccharomyces cerevisiae/genética
6.
Curr Protoc ; 3(4): e717, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37026813

RESUMEN

In eukaryotes, damaged or unneeded proteins are typically degraded by the ubiquitin-proteasome system. In this system, the protein substrate is often first covalently modified with a chain of ubiquitin polypeptides. This chain serves as a signal for delivery to the 26S proteasome, a 2.5-MDa, ATP-dependent multisubunit protease complex. The proteasome consists of a barrel-shaped 20S core particle (CP) that is capped on one or both of its ends by a 19S regulatory particle (RP). The RP is responsible for recognizing the substrate, unfolding it, and translocating it into the CP for destruction. Here we describe simple, one-step purification schemes for isolating the 26S proteasome and its 19S RP and 20S CP subcomplexes from the yeast Saccharomyces cerevisiae. A gel filtration step can be added to further enhance purity. We also describe assays for measuring ubiquitin-dependent and ubiquitin-independent proteolytic activity in vitro. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Purification of active 26S proteasomes Support Protocol 1: Growth of yeast strains and production of yeast cell powder Support Protocol 2: Regeneration of anti-flag M2 affinity gel Basic Protocol 2: Purification of the 19S regulatory particle (RP) Basic Protocol 3: Purification of active 20S CP Basic Protocol 4: In-gel peptidase activity assay for 20S CP and 26S proteasomes Basic Protocol 5: In-solution peptidase activity assay for 20S and 26S proteasomes Basic Protocol 6: Measuring degradation of polyubiquitinated SIC1PY Basic Protocol 7: Gel filtration of purified proteasomes and subcomplexes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Levadura Seca , Complejo de la Endopetidasa Proteasomal/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina , Citoplasma/metabolismo
7.
J Biol Chem ; 299(3): 102927, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682496

RESUMEN

Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control pathway that ensures misfolded proteins are removed from the ER and destroyed. In ERAD, membrane and luminal substrates are ubiquitylated by ER-resident RING-type E3 ubiquitin ligases, retrotranslocated into the cytosol, and degraded by the proteasome. Overexpression of ERAD factors is frequently used in yeast and mammalian cells to study this process. Here, we analyze the impact of ERAD E3 overexpression on substrate turnover in yeast, where there are three ERAD E3 complexes (Doa10, Hrd1, and Asi1-3). Elevated Doa10 or Hrd1 (but not Asi1) RING activity at the ER membrane resulting from protein overexpression inhibits the degradation of specific Doa10 substrates. The ERAD E2 ubiquitin-conjugating enzyme Ubc6 becomes limiting under these conditions, and UBC6 overexpression restores Ubc6-mediated ERAD. Using a subset of the dominant-negative mutants, which contain the Doa10 RING domain but lack the E2-binding region, we show that they induce degradation of membrane tail-anchored Ubc6 independently of endogenous Doa10 and the other ERAD E3 complexes. This remains true even if the cells lack the Dfm1 rhomboid pseudoprotease, which is also a proposed retrotranslocon. Hence, rogue RING activity at the ER membrane elicits a highly specific off-pathway defect in the Doa10 pathway, and the data point to an additional ERAD E3-independent retrotranslocation mechanism.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Expresión Génica
8.
Infect Immun ; 90(12): e0046922, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36374099

RESUMEN

Orientia tsutsugamushi is an etiologic agent of scrub typhus, a globally emerging rickettsiosis that can be fatal. The bacterium's obligate intracellular lifestyle requires its interaction with host eukaryotic cellular pathways. The proteins it employs to do so and their functions during infection are understudied. Recombinant versions of the recently characterized O. tsutsugamushi deubiquitylase (OtDUB) exhibit high-affinity ubiquitin binding, mediate guanine nucleotide exchange to activate Rho GTPases, bind clathrin adaptor protein complexes 1 and 2, and bind the phospholipid phosphatidylserine. Whether OtDUB is expressed and its function during O. tsutsugamushi infection have yet to be explored. Here, OtDUB expression, location, and interactome during infection were examined. O. tsutsugamushi transcriptionally and translationally expresses OtDUB throughout infection of epithelial, monocytic, and endothelial cells. Results from structured illumination microscopy, surface trypsinization of intact bacteria, and acetic acid extraction of non-integral membrane proteins indicate that OtDUB peripherally associates with the O. tsutsugamushi cell wall and is at least partially present on the bacterial surface. Analyses of the proteins with which OtDUB associates during infection revealed several known O. tsutsugamushi cell wall proteins and others. It also forms an interactome with adapter protein complex 2 and other endosomal membrane traffic regulators. This study documents the first interactors of OtDUB during O. tsutsugamushi infection and establishes a strong link between OtDUB and the host endocytic pathway.


Asunto(s)
Orientia tsutsugamushi , Tifus por Ácaros , Humanos , Orientia tsutsugamushi/fisiología , Células Endoteliales , Unión Proteica , Monocitos
9.
iScience ; 25(11): 105351, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36325070

RESUMEN

In ER-associated degradation (ERAD), misfolded ER proteins are degraded by the proteasome after undergoing ubiquitylation. Yeast Doa10 (human MARCHF6/TEB4) is a membrane-embedded E3 ubiquitin ligase that functions with E2s Ubc6 and Ubc7. Ubc6 attaches a single ubiquitin to substrates, which is extended by Ubc7 to form a polyubiquitin chain. We show the conserved C-terminal element (CTE) of Doa10 promotes E3-mediated Ubc6 activity. Doa10 substrates undergoing an alternative ubiquitylation mechanism are still degraded in CTE-mutant cells. Structure prediction by AlphaFold2 suggests the CTE binds near the catalytic RING-CH domain, implying a direct role in substrate ubiquitylation, and we confirm this interaction using intragenic suppression. Truncation analysis defines a minimal E2-binding region of Doa10; structural predictions suggest that Doa10 forms a retrotranslocation channel and that E2s bind within the cofactor-binding region defined here. These results provide mechanistic insight into how Doa10, and potentially other ligases, interact with their cofactors and mediate ERAD.

10.
PLoS Biol ; 20(6): e3001501, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35771886

RESUMEN

Protein ubiquitylation is an important posttranslational modification affecting a wide range of cellular processes. Due to the low abundance of ubiquitylated species in biological samples, considerable effort has been spent on methods to purify and detect ubiquitylated proteins. We have developed and characterized a novel tool for ubiquitin detection and purification based on OtUBD, a high-affinity ubiquitin-binding domain (UBD) derived from an Orientia tsutsugamushi deubiquitylase (DUB). We demonstrate that OtUBD can be used to purify both monoubiquitylated and polyubiquitylated substrates from yeast and human tissue culture samples and compare their performance with existing methods. Importantly, we found conditions for either selective purification of covalently ubiquitylated proteins or co-isolation of both ubiquitylated proteins and their interacting proteins. As proof of principle for these newly developed methods, we profiled the ubiquitylome and ubiquitin-associated proteome of the budding yeast Saccharomyces cerevisiae. Combining OtUBD affinity purification with quantitative proteomics, we identified potential substrates for the E3 ligases Bre1 and Pib1. OtUBD provides a versatile, efficient, and economical tool for ubiquitin research with specific advantages over certain other methods, such as in efficiently detecting monoubiquitylation or ubiquitin linkages to noncanonical sites.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Humanos , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Mol Cell Biol ; 42(7): e0007122, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727026

RESUMEN

Host cell membrane-trafficking pathways are often manipulated by bacterial pathogens to gain cell entry, avoid immune responses, or to obtain nutrients. The 1,369-residue OtDUB protein from the obligate intracellular human pathogen Orientia tsutsugamushi bears a deubiquitylase (DUB) and additional domains. Here we show that OtDUB ectopic expression disrupts membrane trafficking through multiple mechanisms. OtDUB binds directly to the clathrin adaptor-protein (AP) complexes AP-1 and AP-2, and the OtDUB275-675 fragment is sufficient for binding to either complex. To assess the impact of OtDUB interactions with AP-1 and AP-2, we examined trans-Golgi trafficking and endocytosis, respectively. Endocytosis is reduced by two separate OtDUB fragments: one contains the AP-binding domain (OtDUB1-675), and the other does not (OtDUB675-1369). OtDUB1-675 disruption of endocytosis requires its ubiquitin-binding capabilities. OtDUB675-1369 also fragments trans- and cis-Golgi structures. Using a growth-based selection in yeast, we identified viable OtDUB675-1369 point mutants that also no longer caused Golgi defects in human cells. In parallel, we found OtDUB675-1369 binds directly to phosphatidylserine, and this lipid binding is lost in the same mutants. Together these results show that OtDUB contains multiple activities capable of modulating membrane trafficking. We discuss how these activities may contribute to Orientia infections.


Asunto(s)
Orientia tsutsugamushi , Complejo 1 de Proteína Adaptadora/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Endocitosis , Aparato de Golgi/metabolismo , Interacciones Huésped-Patógeno , Humanos , Orientia tsutsugamushi/metabolismo , Unión Proteica , Tifus por Ácaros/metabolismo , Tifus por Ácaros/microbiología , Tifus por Ácaros/patología
12.
Curr Biol ; 32(6): R287-R289, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35349818

RESUMEN

The Wolbachia cidA and cidB genes promote bacterial endosymbiont inheritance through the host female germline. CidB is now shown to load into maturing sperm nuclei. Following fertilization, it disrupts paternal chromosome condensation, triggering embryonic arrest if not countered by CidA in Wolbachia-infected eggs.


Asunto(s)
Wolbachia , Animales , Antídotos , Citoplasma , Citosol , Drosophila melanogaster/genética , Wolbachia/genética
13.
Nat Commun ; 13(1): 1608, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338130

RESUMEN

Cytoplasmic incompatibility (CI) results when Wolbachia bacteria-infected male insects mate with uninfected females, leading to embryonic lethality. "Rescue" of viability occurs if the female harbors the same Wolbachia strain. CI is caused by linked pairs of Wolbachia genes called CI factors (CifA and CifB). The co-evolution of CifA-CifB pairs may account in part for the incompatibility patterns documented in insects infected with different Wolbachia strains, but the molecular mechanisms remain elusive. Here, we use X-ray crystallography and AlphaFold to analyze the CI factors from Wolbachia strain wMel called CidAwMel and CidBwMel. Substituting CidAwMel interface residues with those from CidAwPip (from strain wPip) enables the mutant protein to bind CidBwPip and rescue CidBwPip-induced yeast growth defects, supporting the importance of CifA-CifB interaction in CI rescue. Sequence divergence in CidAwPip and CidBwPip proteins affects their pairwise interactions, which may help explain the complex incompatibility patterns of mosquitoes infected with different wPip strains.


Asunto(s)
Wolbachia , Animales , Citoplasma/genética , Citosol , Drosophila melanogaster/genética , Femenino , Masculino , Saccharomyces cerevisiae , Simbiosis/genética , Wolbachia/genética , Wolbachia/metabolismo
14.
J Cell Sci ; 135(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35099016

RESUMEN

The proteasome is central to proteolysis by the ubiquitin-proteasome system under normal growth conditions but is itself degraded through macroautophagy under nutrient stress. A recently described AMP-activated protein kinase (AMPK)-regulated endosomal sorting complex required for transport (ESCRT)-dependent microautophagy pathway also regulates proteasome trafficking and degradation in low-glucose conditions in yeast. Aberrant proteasomes are more prone to microautophagy, suggesting the ESCRT system fine-tunes proteasome quality control under low-glucose stress. Here, we uncover additional features of the selective microautophagy of proteasomes in budding yeast. Genetic or pharmacological induction of aberrant proteasomes is associated with increased mono- or oligo-ubiquitylation of proteasome components, which appears to be recognized by ESCRT-0. AMPK controls this pathway in part by regulating the trafficking of ESCRT-0 to the vacuole surface, which also leads to degradation of the Vps27 subunit of ESCRT-0. The Rsp5 ubiquitin ligase contributes to proteasome subunit ubiquitylation, and multiple ubiquitin-binding elements in Vps27 are involved in their recognition. We propose that ESCRT-0 at the vacuole surface recognizes ubiquitylated proteasomes and initiates their microautophagic elimination during glucose depletion. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Microautofagia , Proteínas de Saccharomyces cerevisiae , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinación
15.
mBio ; 13(1): e0317721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073749

RESUMEN

Wolbachia is an obligate intracellular bacterium that can alter reproduction of its arthropod hosts, often through a mechanism called cytoplasmic incompatibility (CI). In CI, uninfected females fertilized by infected males yield few offspring, but if both are similarly infected, normal embryo viability results (called "rescue"). CI factors (Cifs) responsible for CI are pairs of proteins encoded by linked genes. The downstream gene in each pair encodes either a deubiquitylase (CidB) or a nuclease (CinB). The upstream gene products, CidA and CinA, bind their cognate enzymes with high specificity. Expression of CidB or CinB in yeast inhibits growth, but growth is rescued by expression of the cognate CifA protein. By contrast, transgenic Drosophila male germ line expression of both cifA and cifB was reported to be necessary to induce CI-like embryonic arrest; cifA expression alone in females is sufficient for rescue. This pattern, seen with genes from several Wolbachia strains, has been called the "2-by-1" model. Here, we show that male germ line expression of the cinB gene alone, from a distinct clade of cif genes from wNo Wolbachia, is sufficient to induce nearly complete loss of embryo viability. This male sterility is fully rescued by cognate cinAwNo expression in the female germ line. The proteins behave similarly in yeast. CinBwNo toxicity depends on its nuclease active site. These results demonstrate that highly divergent CinB nucleases can induce CI, that rescue by cognate CifA factors is a general feature of Wolbachia CI systems, and that CifA is not strictly required in males for CI induction. IMPORTANCE Wolbachia bacteria live within the cells of many insects. Like mitochondria, they are only inherited from females. Wolbachia often increases the number of infected females to promote spread of infection using a type of male sterility called cytoplasmic incompatibility (CI): when uninfected females mate with infected males, most embryos die; if both are similarly infected, embryos develop normally, giving infected females an advantage in producing offspring. CI is being used against disease-carrying mosquitoes and agricultural pests. Wolbachia proteins called CifA and CifB, which bind one another, cause CI, but how they work has been unclear. Here, we show that a CifB protein singly produced in fruit fly males causes sterility in crosses to normal females, but this is rescued if the females produce the CifA partner. These findings clarify a broad range of observations on CI and will allow more rational approaches to using it for insect control.


Asunto(s)
Infertilidad Masculina , Wolbachia , Animales , Masculino , Femenino , Humanos , Drosophila/microbiología , Wolbachia/genética , Saccharomyces cerevisiae , Animales Modificados Genéticamente , Citoplasma/microbiología
16.
Biomolecules ; 11(12)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34944465

RESUMEN

The diverse functions of proteins depend on their proper three-dimensional folding and assembly. Misfolded cellular proteins can potentially harm cells by forming aggregates in their resident compartments that can interfere with vital cellular processes or sequester important factors. Protein quality control (PQC) pathways are responsible for the repair or destruction of these abnormal proteins. Most commonly, the ubiquitin-proteasome system (UPS) is employed to recognize and degrade those proteins that cannot be refolded by molecular chaperones. Misfolded substrates are ubiquitylated by a subset of ubiquitin ligases (also called E3s) that operate in different cellular compartments. Recent research in Saccharomyces cerevisiae has shown that the most prominent ligases mediating cytoplasmic and nuclear PQC have overlapping yet distinct substrate specificities. Many substrates have been characterized that can be targeted by more than one ubiquitin ligase depending on their localization, and cytoplasmic PQC substrates can be directed to the nucleus for ubiquitylation and degradation. Here, we review some of the major yeast PQC ubiquitin ligases operating in the nucleus and cytoplasm, as well as current evidence indicating how these ligases can often function redundantly toward substrates in these compartments.


Asunto(s)
Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
17.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34620712

RESUMEN

Wolbachia bacteria, inherited through the female germ line, infect a large fraction of arthropod species. Many Wolbachia strains manipulate host reproduction, most commonly through cytoplasmic incompatibility (CI). CI, a conditional male sterility, results when Wolbachia-infected male insects mate with uninfected females; viability is restored if the female is similarly infected (called "rescue"). CI is used to help control mosquito-borne viruses such as dengue and Zika, but its mechanisms remain unknown. The coexpressed CI factors CifA and CifB form stable complexes in vitro, but the timing and function of this interaction in the insect are unresolved. CifA expression in the female germ line is sufficient for rescue. We report high-resolution structures of a CI-factor complex, CinA-CinB, which utilizes a unique binding mode between the CinA rescue factor and the CinB nuclease; the structures were validated by biochemical and yeast growth analyses. Importantly, transgenic expression in Drosophila of a nonbinding CinA mutant, designed based on the CinA-CinB structure, suggests CinA expressed in females must bind CinB imported by sperm in order to rescue embryonic viability. Binding between cognate factors is conserved in an enzymatically distinct CI system, CidA-CidB, suggesting universal features in Wolbachia CI induction and rescue.


Asunto(s)
Drosophila melanogaster/microbiología , Embrión no Mamífero/embriología , Infertilidad Masculina/fisiopatología , Reproducción/fisiología , Wolbachia/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila melanogaster/genética , Desarrollo Embrionario , Femenino , Masculino , Control de Mosquitos/métodos , Complejos Multiproteicos/metabolismo , Unión Proteica , Simbiosis , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/virología
18.
Mol Biol Cell ; 32(20): ar6, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347506

RESUMEN

Proteasome assembly utilizes multiple dedicated assembly chaperones and is regulated by signaling pathways that respond to diverse stress conditions. To discover new factors influencing proteasome base assembly, we screened a tiled high-copy yeast genomic library to identify dosage suppressors of a temperature-sensitive proteasome regulatory particle (RP) base mutant. The screen identified negative salt tolerance 1 (Nst1), a protein that when overexpressed specifically suppressed the temperature sensitivity and proteasome-assembly defects of multiple base mutants. Nst1 overexpression reduced cytosolic RP ATPase (Rpt) aggregates in nas6Δ rpn14Δ cells, which lack two RP assembly chaperones. Nst1 is highly polar and predicted to have numerous intrinsically disordered regions, characteristics commonly found in proteins that can segregate into membraneless condensates. In agreement with this, both endogenous and overexpressed Nst1 could form cytosolic puncta that colocalized with processing body (P-body) components. Consistent with the accumulation of translationally inactive mRNAs in P-bodies, Nst1 overexpression inhibited global protein translation in nas6Δ rpn14Δ cells. Translational inhibition is known to suppress aggregation and proteasome assembly defects in base mutants under heat stress. Our data indicate that Nst1 is a previously overlooked P-body component that, when expressed at elevated levels inhibits translation, prevents Rpt subunit aggregation and rescues proteasome assembly under stress conditions.


Asunto(s)
Cuerpos de Procesamiento/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Chaperonas Moleculares/metabolismo , Cuerpos de Procesamiento/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteómica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Tolerancia a la Sal , Levaduras/metabolismo
19.
Nucleic Acids Res ; 49(11): 6043-6052, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33885816

RESUMEN

Chromatin structure and gene expression are dynamically controlled by post-translational modifications (PTMs) on histone proteins, including ubiquitylation, methylation, acetylation and small ubiquitin-like modifier (SUMO) conjugation. It was initially thought that histone sumoylation exclusively suppressed gene transcription, but recent advances in proteomics and genomics have uncovered its diverse functions in cotranscriptional processes, including chromatin remodeling, transcript elongation, and blocking cryptic initiation. Histone sumoylation is integral to complex signaling codes that prime additional histone PTMs as well as modifications of the RNA polymerase II carboxy-terminal domain (RNAPII-CTD) during transcription. In addition, sumoylation of histone variants is critical for the DNA double-strand break (DSB) response and for chromosome segregation during mitosis. This review describes recent findings on histone sumoylation and its coordination with other histone and RNAPII-CTD modifications in the regulation of chromatin dynamics.


Asunto(s)
Cromatina/metabolismo , Código de Histonas , Histonas/metabolismo , Sumoilación , Centrómero/metabolismo , Cromatina/química , Reparación del ADN , Regulación de la Expresión Génica , Transcripción Genética
20.
J Biol Chem ; 296: 100660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33862083

RESUMEN

The proteasome is a large protease complex that degrades many different cellular proteins. In eukaryotes, the 26S proteasome contains six different subunits of the ATPases associated with diverse cellular activities family, Rpt1-Rpt6, which form a hexameric ring as part of the base subcomplex that drives unfolding and translocation of substrates into the proteasome core. Archaeal proteasomes contain only a single Rpt-like ATPases associated with diverse cellular activities ATPase, the proteasome-activating nucleotidase, which forms a trimer of dimers. A key proteasome-activating nucleotidase proline residue (P91) forms cis- and trans-peptide bonds in successive subunits around the ring, allowing efficient dimerization through upstream coiled coils. However, the importance of the equivalent Rpt prolines for eukaryotic proteasome assembly was unknown. Here we showed that the equivalent proline is highly conserved in Rpt2, Rpt3, and Rpt5, and loosely conserved in Rpt1, in deeply divergent eukaryotes. Although in no case was a single Pro-to-Ala substitution in budding yeast strongly deleterious to growth, the rpt5-P76A mutation decreased levels of the protein and induced a mild proteasome assembly defect. Moreover, the rpt2-P103A, rpt3-P93A, and rpt5-P76A mutations all caused synthetic defects when combined with deletions of specific proteasome base assembly chaperones. The rpt2-P103A rpt5-P76A double mutant had uniquely strong growth defects attributable to defects in proteasome base formation. Several Rpt subunits in this mutant formed aggregates that were cleared, at least in part, by Hsp42 chaperone-mediated protein quality control. We propose that the conserved Rpt linker prolines promote efficient 26S proteasome base assembly by facilitating specific ATPase heterodimerization.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Prolina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Choque Térmico/genética , Mutación , Prolina/genética , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Dominios Proteicos , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...