Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
EMBO J ; 43(5): 836-867, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332377

RESUMEN

The meiotic chromosome axis coordinates chromosome organization and interhomolog recombination in meiotic prophase and is essential for fertility. In S. cerevisiae, the HORMAD protein Hop1 mediates the enrichment of axis proteins at nucleosome-rich islands through a central chromatin-binding region (CBR). Here, we use cryoelectron microscopy to show that the Hop1 CBR directly recognizes bent nucleosomal DNA through a composite interface in its PHD and winged helix-turn-helix domains. Targeted disruption of the Hop1 CBR-nucleosome interface causes a localized reduction of axis protein binding and meiotic DNA double-strand breaks (DSBs) in axis islands and leads to defects in chromosome synapsis. Synthetic effects with mutants of the Hop1 regulator Pch2 suggest that nucleosome binding delays a conformational switch in Hop1 from a DSB-promoting, Pch2-inaccessible state to a DSB-inactive, Pch2-accessible state to regulate the extent of meiotic DSB formation. Phylogenetic analyses of meiotic HORMADs reveal an ancient origin of the CBR, suggesting that the mechanisms we uncover are broadly conserved.


Asunto(s)
Meiosis , Proteínas de Saccharomyces cerevisiae , Nucleosomas , Microscopía por Crioelectrón , Filogenia , Saccharomyces cerevisiae/genética , ADN , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell Genom ; 3(11): 100439, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020967

RESUMEN

We designed and synthesized synI, which is ∼21.6% shorter than native chrI, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns surrounding potential instability and karyotype imbalance and is now attached to synIII, yielding the first synthetic yeast fusion chromosome. Additional fusion chromosomes were constructed to study nuclear function. ChrIII-I and chrIX-III-I fusion chromosomes have twisted structures, which depend on silencing protein Sir3. As a smaller chromosome, chrI also faces special challenges in assuring meiotic crossovers required for efficient homolog disjunction. Centromere deletions into fusion chromosomes revealed opposing effects of core centromeres and pericentromeres in modulating deposition of the crossover-promoting protein Red1. These effects extend over 100 kb and promote disproportionate Red1 enrichment, and thus crossover potential, on small chromosomes like chrI. These findings reveal the power of synthetic genomics to uncover new biology and deconvolute complex biological systems.

3.
Genetics ; 225(2)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37616582

RESUMEN

Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.


Asunto(s)
Recombinación Genética , Saccharomycetales , Saccharomycetales/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Complejo Sinaptonémico
4.
Nat Commun ; 13(1): 7245, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36434003

RESUMEN

Ribosome biogenesis in eukaryotes is supported by hundreds of ribosomal RNA (rRNA) gene copies that are encoded in the ribosomal DNA (rDNA). The multiple copies of rRNA genes are thought to have low sequence diversity within one species. Here, we present species-wide rDNA sequence analysis in Saccharomyces cerevisiae that challenges this view. We show that rDNA copies in this yeast are heterogeneous, both among and within isolates, and that many variants avoided fixation or elimination over evolutionary time. The sequence diversity landscape across the rDNA shows clear functional stratification, suggesting different copy-number thresholds for selection that contribute to rDNA diversity. Notably, nucleotide variants in the most conserved rDNA regions are sufficiently deleterious to exhibit signatures of purifying selection even when present in only a small fraction of rRNA gene copies. Our results portray a complex evolutionary landscape that shapes rDNA sequence diversity within a single species and reveal unexpectedly strong purifying selection of multi-copy genes.


Asunto(s)
Evolución Biológica , Genes de ARNr/genética , ADN Ribosómico/genética , Análisis de Secuencia de ADN
5.
Life Sci Alliance ; 5(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36271494

RESUMEN

Meiotic cells introduce a numerous programmed DNA breaks into their genome to stimulate meiotic recombination and ensure controlled chromosome inheritance and fertility. A checkpoint network involving key kinases and phosphatases coordinates the repair of these DNA breaks, but the precise phosphorylation targets remain poorly understood. It is also unknown whether meiotic DNA breaks change gene expression akin to the canonical DNA-damage response. To address these questions, we analyzed the meiotic DNA break response in Saccharomyces cerevisiae using multiple systems-level approaches. We identified 332 DNA break-dependent phosphorylation sites, vastly expanding the number of known events during meiotic prophase. Less than half of these events occurred in recognition motifs for the known meiotic checkpoint kinases Mec1 (ATR), Tel1 (ATM), and Mek1 (CHK2), suggesting that additional kinases contribute to the meiotic DNA-break response. We detected a clear transcriptional program but detected only very few changes in protein levels. We attribute this dichotomy to a decrease in transcript levels after meiotic entry that dampens the effects of break-induced transcription sufficiently to cause only minimal changes in the meiotic proteome.


Asunto(s)
Meiosis , Proteínas de Saccharomyces cerevisiae , Meiosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Roturas del ADN de Doble Cadena , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Ciclo Celular/genética , Proteoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Unión al ADN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
6.
Nucleic Acids Res ; 50(8): 4545-4556, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35412621

RESUMEN

Successful meiotic recombination, and thus fertility, depends on conserved axis proteins that organize chromosomes into arrays of anchored chromatin loops and provide a protected environment for DNA exchange. Here, we show that the stereotypic chromosomal distribution of axis proteins in Saccharomyces cerevisiae is the additive result of two independent pathways: a cohesin-dependent pathway, which was previously identified and mediates focal enrichment of axis proteins at gene ends, and a parallel cohesin-independent pathway that recruits axis proteins to broad genomic islands with high gene density. These islands exhibit elevated markers of crossover recombination as well as increased nucleosome density, which we show is a direct consequence of the underlying DNA sequence. A predicted PHD domain in the center of the axis factor Hop1 specifically mediates cohesin-independent axis recruitment. Intriguingly, other chromosome organizers, including cohesin, condensin, and topoisomerases, are differentially depleted from the same regions even in non-meiotic cells, indicating that these DNA sequence-defined chromatin islands exert a general influence on the patterning of chromosome structure.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Meiosis/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Front Cell Dev Biol ; 9: 667073, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928091

RESUMEN

Germ cells undergoing meiosis rely on an intricate network of surveillance mechanisms that govern the production of euploid gametes for successful sexual reproduction. These surveillance mechanisms are particularly crucial during meiotic prophase, when cells execute a highly orchestrated program of chromosome morphogenesis and recombination, which must be integrated with the meiotic cell division machinery to ensure the safe execution of meiosis. Dynamic protein phosphorylation, controlled by kinases and phosphatases, has emerged as one of the main signaling routes for providing readout and regulation of chromosomal and cellular behavior throughout meiotic prophase. In this review, we discuss common principles and provide detailed examples of how these phosphorylation events are employed to ensure faithful passage of chromosomes from one generation to the next.

8.
Front Cell Dev Biol ; 8: 594092, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195270

RESUMEN

The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.

9.
Genetics ; 215(1): 59-73, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152049

RESUMEN

During meiotic prophase, concurrent transcription, recombination, and chromosome synapsis place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles of topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes, including many meiotic double-strand break (DSB) hotspots. Despite the comparable binding patterns, top1 and top2 mutations have different effects on meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants exhibit a marked delay in meiotic chromosome remodeling and elevated DSB signals on synapsed chromosomes. The problems in chromosome remodeling were linked to altered Top2 binding patterns rather than a loss of Top2 catalytic activity, and stemmed from a defect in recruiting the chromosome remodeler Pch2/TRIP13 to synapsed chromosomes. No chromosomal defects were observed in the absence of TOP1 Our results imply independent roles for Top1 and Top2 in modulating meiotic chromosome structure and recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/ultraestructura , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo II/genética , Meiosis , Unión Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
10.
Nat Commun ; 10(1): 2894, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263106

RESUMEN

The Origin Recognition Complex (ORC) is essential for replication, heterochromatin formation, telomere maintenance and genome stability in eukaryotes. Here we present the structure of the yeast Orc1 BAH domain bound to the nucleosome core particle. Our data reveal that Orc1, unlike its close homolog Sir3 involved in gene silencing, does not appear to discriminate between acetylated and non-acetylated lysine 16, modification states of the histone H4 tail that specify open and closed chromatin respectively. We elucidate the mechanism for this unique feature of Orc1 and hypothesize that its ability to interact with nucleosomes regardless of K16 modification state enables it to perform critical functions in both hetero- and euchromatin. We also show that direct interactions with nucleosomes are essential for Orc1 to maintain the integrity of rDNA borders during meiosis, a process distinct and independent from its known roles in silencing and replication.


Asunto(s)
Nucleosomas/metabolismo , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Ensamble y Desensamble de Cromatina , Eucromatina/genética , Eucromatina/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Complejo de Reconocimiento del Origen/genética , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
11.
Nat Commun ; 10(1): 970, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814509

RESUMEN

Faithful meiotic chromosome inheritance and fertility rely on the stimulation of meiotic crossover recombination by potentially genotoxic DNA double-strand breaks (DSBs). To avoid excessive damage, feedback mechanisms down-regulate DSBs, likely in response to initiation of crossover repair. In Saccharomyces cerevisiae, this regulation requires the removal of the conserved DSB-promoting protein Hop1/HORMAD during chromosome synapsis. Here, we identify privileged end-adjacent regions (EARs) spanning roughly 100 kb near all telomeres that escape DSB down-regulation. These regions retain Hop1 and continue to break in pachynema despite normal synaptonemal complex deposition. Differential retention of Hop1 requires the disassemblase Pch2/TRIP13, which preferentially removes Hop1 from telomere-distant sequences, and is modulated by the histone deacetylase Sir2 and the nucleoporin Nup2. Importantly, the uniform size of EARs among chromosomes contributes to disproportionately high DSB and repair signals on short chromosomes in pachynema, suggesting that EARs partially underlie the curiously high recombination rate of short chromosomes.


Asunto(s)
Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , Meiosis/genética , Saccharomyces cerevisiae/genética , Telómero/genética , Emparejamiento Cromosómico/genética , Cromosomas Fúngicos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Telómero/metabolismo
12.
BMC Genomics ; 20(1): 54, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30654749

RESUMEN

BACKGROUND: Chromatin-immunoprecipitation followed by sequencing (ChIP-seq) is the method of choice for mapping genome-wide binding of chromatin-associated factors. However, broadly applicable methods for between-sample comparisons are lacking. RESULTS: Here, we introduce SNP-ChIP, a method that leverages small-scale intra-species polymorphisms, mainly SNPs, for quantitative spike-in normalization of ChIP-seq results. Sourcing spike-in material from the same species ensures antibody cross-reactivity and physiological coherence, thereby eliminating two central limitations of traditional spike-in approaches. We show that SNP-ChIP is robust to changes in sequencing depth and spike-in proportions, and reliably identifies changes in overall protein levels, irrespective of changes in binding distribution. Application of SNP-ChIP to test cases from budding yeast meiosis allowed discovery of novel regulators of the chromosomal protein Red1 and quantitative analysis of the DNA-damage associated histone modification γ-H2AX. CONCLUSION: SNP-ChIP is fully compatible with the intra-species diversity of humans and most model organisms and thus offers a general method for normalizing ChIP-seq results.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Genoma Fúngico , Polimorfismo de Nucleótido Simple/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Mutación/genética , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Cohesinas
13.
Curr Genet ; 65(2): 407-415, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30361853

RESUMEN

Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, rDNA segregation, and gene regulation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Animales , División Celular/genética , Ensamble y Desensamble de Cromatina , ADN Ribosómico/genética , Regulación de la Expresión Génica , Sitios Genéticos , Genoma , Humanos , Interfase/genética , ARN de Transferencia , Transcripción Genética
14.
Mol Cell ; 72(3): 583-593.e4, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30293780

RESUMEN

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.


Asunto(s)
Variaciones en el Número de Copia de ADN/fisiología , ADN Circular/fisiología , ADN Ribosómico/fisiología , Variaciones en el Número de Copia de ADN/genética , Replicación del ADN/fisiología , ADN Circular/genética , ADN Circular/metabolismo , ADN Ribosómico/genética , Proteínas de Unión al ADN/fisiología , Genómica , ARN Ribosómico/genética , Recombinación Genética/genética , Ribosomas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Genetics ; 210(1): 331-344, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29970489

RESUMEN

Condensins are broadly conserved chromosome organizers that function in chromatin compaction and transcriptional regulation, but to what extent these two functions are linked has remained unclear. Here, we analyzed the effect of condensin inactivation on genome compaction and global gene expression in the yeast Saccharomyces cerevisiae by performing spike-in-controlled genome-wide chromosome conformation capture (3C-seq) and mRNA-sequencing analysis. 3C-seq analysis shows that acute condensin inactivation leads to a global decrease in close-range intrachromosomal interactions as well as more specific losses of interchromosomal tRNA gene clustering. In addition, a condensin-rich interaction domain between the ribosomal DNA and the centromere on chromosome XII is lost upon condensin inactivation. Unexpectedly, these large-scale changes in chromosome architecture are not associated with global changes in mRNA levels. Our data suggest that the global transcriptional program of proliferating S. cerevisiae is resistant to condensin inactivation and the associated profound changes in genome organization.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genoma/genética , Mitosis/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma/genética
16.
PLoS Genet ; 13(7): e1006928, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28746375

RESUMEN

Meiotic chromosomes assemble characteristic "axial element" structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20-25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response.


Asunto(s)
Dosificación de Gen/genética , Meiosis/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Emparejamiento Cromosómico , Cromosomas Fúngicos/genética , Roturas del ADN de Doble Cadena , Mutación , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Complejo Sinaptonémico/genética
17.
EMBO J ; 36(17): 2488-2509, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694245

RESUMEN

The synaptonemal complex (SC) is a proteinaceous macromolecular assembly that forms during meiotic prophase I and mediates adhesion of paired homologous chromosomes along their entire lengths. Although prompt disassembly of the SC during exit from prophase I is a landmark event of meiosis, the underlying mechanism regulating SC destruction has remained elusive. Here, we show that DDK (Dbf4-dependent Cdc7 kinase) is central to SC destruction. Upon exit from prophase I, Dbf4, the regulatory subunit of DDK, directly associates with and is phosphorylated by the Polo-like kinase Cdc5. In parallel, upregulated CDK1 activity also targets Dbf4. An enhanced Dbf4-Cdc5 interaction pronounced phosphorylation of Dbf4 and accelerated SC destruction, while reduced/abolished Dbf4 phosphorylation hampered destruction of SC proteins. SC destruction relieved meiotic inhibition of the ubiquitous recombinase Rad51, suggesting that the mitotic recombination machinery is reactivated following prophase I exit to repair any persisting meiotic DNA double-strand breaks. Taken together, we propose that the concerted action of DDK, Polo-like kinase, and CDK1 promotes efficient SC destruction at the end of prophase I to ensure faithful inheritance of the genome.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Meiosis/fisiología , Proteínas Quinasas/metabolismo , Complejo Sinaptonémico/metabolismo , Fosforilación , Saccharomycetales/metabolismo
19.
PLoS Biol ; 14(2): e1002369, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26870961

RESUMEN

Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression.


Asunto(s)
Emparejamiento Cromosómico , Reparación del ADN , MAP Quinasa Quinasa 1/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Meiosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Cell Rep ; 14(5): 1018-1024, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26832414

RESUMEN

Tandem repetitive DNA is highly abundant in eukaryotic genomes and contributes to transcription control and genome stability. However, how the individual sequences within tandem repeats behave remains largely unknown. Here we develop a collection of fission yeast strains with a reporter gene inserted at different units in a tandem repeat array. We show that, contrary to what is usually assumed, transcriptional silencing and replication timing among the individual repeats differ significantly. RNAi-mediated H3K9 methylation is essential for the silencing position effect. A short hairpin RNA of ura4(+) induces silencing in trans within the tandem array in a position-dependent manner. Importantly, the position effect depends on the condensin subunit, cut3(+). Cut3 promotes the position effect via interaction with the RNA-induced transcriptional silencing (RITS) complex. This study reveals variations in silencing within tandem DNA repeats and provides mechanistic insights into how DNA repeats at the individual level are regulated.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Secuencias Repetidas en Tándem/genética , Momento de Replicación del ADN , Genes Reporteros , Histonas/metabolismo , Metilación , Subunidades de Proteína/metabolismo , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...