Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477343

RESUMEN

Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.


Asunto(s)
Actinas , Pez Cebra , Animales , Actinas/metabolismo , Células Fotorreceptoras/metabolismo , Retina , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras de Vertebrados
2.
J Anat ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38361481

RESUMEN

Although previous studies have reported fatty infiltration of the gastrocnemius-soleus complex, little is known about the volumetric distribution and patterns of fatty infiltration. The purpose of this anatomical study was to document and quantify the frequency, distribution, and pattern of fatty infiltration of the gastrocnemius-soleus complex. One hundred formalin-embalmed specimens (mean age 78.1 ± 12.3 years; 48F/52M) were serially dissected to document the frequency, distribution, and pattern of fatty infiltration in the medial and lateral heads of gastrocnemius and soleus muscles. Fatty infiltration was found in 23% of specimens, 13 unilaterally (8F/5M) and 10 (5M/5F) bilaterally. The fatty infiltration process was observed to begin medially from the medial aspect of the medial head of gastrocnemius and medial margin of soleus and then progressed laterally throughout the medial head of gastrocnemius and the marginal, anterior, and posterior soleus. The lateral head of gastrocnemius remained primarily muscular in all specimens. Microscopically, the pattern of infiltration was demonstrated as intramuscular with intact aponeuroses, and septa. The remaining endo-, peri-, and epimysium preserved the overall contour of the gastrocnemius-soleus complex, even in cases of significant fatty replacement. Since the external contour of the calf is preserved, the presence of fatty infiltration may be underdiagnosed in the clinic without imaging. Myosteatosis is associated with gait and balance challenges in the elderly, which can impact quality of life and result in increased risk of falling. The findings of the study have implications in the rehabilitation management of elderly patients with sarcopenia and myosteatosis.

3.
J Anat ; 242(3): 327-353, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36281951

RESUMEN

Sensory neurons use specialized apical processes to perceive external stimuli and monitor internal body conditions. The apical apparatus can include cilia, microvilli, or both, and is adapted for the functions of the particular cell type. Photoreceptors detect light through a large, modified cilium (outer segment), that is supported by a surrounding ring of microvilli-like calyceal processes (CPs). Although first reported 150 years ago, CPs remain poorly understood. As a basis for future study, we therefore conducted a review of existing literature about sensory cell microvilli, which can act either as the primary sensory detector or as support for a cilia-based detector. While all microvilli are finger-like cellular protrusions with an actin core, the processes vary across cell types in size, number, arrangement, dynamics, and function. We summarize the current state of knowledge about CPs and the characteristics of the microvilli found on inner ear hair cells (stereocilia) and cerebral spinal fluid-contacting neurons, with comparisons to the brush border of the intestinal and renal epithelia. The structure, stability, and dynamics of the actin core are regulated by a complement of actin-binding proteins, which includes both common components and unique features when compared across cell types. Further, microvilli are often supported by lateral links, a glycocalyx, and a defined extracellular matrix, each adapted to the function and environment of the cell. Our comparison of microvillar features will inform further research into how CPs support photoreceptor function, and also provide a general basis for investigations into the structure and functions of apical microvilli found on sensory neurons.


Asunto(s)
Actinas , Células Receptoras Sensoriales , Microvellosidades/metabolismo , Actinas/metabolismo , Células Receptoras Sensoriales/metabolismo , Cilios
4.
Nat Commun ; 13(1): 6595, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329026

RESUMEN

Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.


Asunto(s)
Ciliopatías , Distrofias Retinianas , Masculino , Animales , Humanos , Cilios/metabolismo , Pez Cebra/genética , Caenorhabditis elegans/metabolismo , Semen/metabolismo , Ciliopatías/genética , Ciliopatías/metabolismo , Proteínas/metabolismo
5.
Prog Retin Eye Res ; 91: 101096, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35811244

RESUMEN

Photoreceptor dysfunctions and degenerative diseases are significant causes of vision loss in patients, with few effective treatments available. Targeted interventions to prevent or reverse photoreceptor-related vision loss are not possible without a thorough understanding of the underlying mechanism leading to disease, which is exceedingly difficult to accomplish in the human system. Cone diseases are particularly challenging to model, as some popular genetically modifiable model animals are nocturnal with a rod-dominant visual system and cones that have dissimilarities to human cones. As a result, cone diseases, which affect visual acuity, colour perception, and central vision in patients, are generally poorly understood in terms of pathology and mechanism. Zebrafish (Danio rerio) provide the opportunity to model photoreceptor diseases in a diurnal vertebrate with a cone-rich retina which develops many macular degeneration-like pathologies. Zebrafish undergo external development, allowing early-onset retinal diseases to be detected and studied, and many ophthalmic tools are available for zebrafish visual assessment during development and adulthood. There are numerous zebrafish models of photoreceptor disease, spanning the various types of photoreceptor disease (developmental, rod, cone, and mixed photoreceptor diseases) and genetic/molecular cause. In this review, we explore the features of zebrafish that make them uniquely poised to model cone diseases, summarize the established zebrafish models of inherited photoreceptor disease, and discuss how disease in these models compares to the human presentation, where applicable. Further, we highlight the contributions of these zebrafish models to our understanding of photoreceptor biology and disease, and discuss future directions for utilising and investigating these diverse models.


Asunto(s)
Degeneración Macular , Pez Cebra , Animales , Humanos , Adulto , Células Fotorreceptoras Retinianas Conos/patología , Retina , Degeneración Macular/patología , Agudeza Visual
6.
Cell Rep ; 38(5): 110311, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108531

RESUMEN

Gut microbial products direct growth, differentiation, and development in animal hosts. However, we lack system-wide understanding of cell-specific responses to the microbiome. We profiled cell transcriptomes from the intestine, and associated tissue, of zebrafish larvae raised in the presence or absence of a microbiome. We uncovered extensive cellular heterogeneity in the conventional zebrafish intestinal epithelium, including previously undescribed cell types with known mammalian homologs. By comparing conventional to germ-free profiles, we mapped microbial impacts on transcriptional activity in each cell population. We revealed intricate degrees of cellular specificity in host responses to the microbiome that included regulatory effects on patterning and on metabolic and immune activity. For example, we showed that the absence of microbes hindered pro-angiogenic signals in the developing vasculature, causing impaired intestinal vascularization. Our work provides a high-resolution atlas of intestinal cellular composition in the developing fish gut and details the effects of the microbiome on each cell type.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/fisiología , Intestinos/irrigación sanguínea , Microbiota/fisiología , Animales , Vida Libre de Gérmenes/fisiología , ARN Ribosómico 16S/metabolismo , Pez Cebra
7.
Doc Ophthalmol ; 142(1): 99-109, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32691203

RESUMEN

PURPOSE: The electroretinogram (ERG) is a powerful approach for investigating visual function in zebrafish ocular disease models. However, complexity, cost, and a literature gap present as significant barriers for the introduction of this technology to new zebrafish laboratories. Here, we introduce a simplified and effective method to obtain zebrafish ERGs. METHODS: In-house assembled recording electrodes and a custom 3D-printed platform were used to gather high-quality and consistent ERG data from zebrafish at 3 developmental timepoints-larval, juvenile, and adult. Fish were tested under both scotopic (dark-adapted) and photopic (light-adapted) conditions to differentiate between the rod and cone systems, respectively. RESULTS: Robust ERG waveforms across all developmental timepoints were obtained using the methodology presented here. We observed an overall increase in signal amplitude as development progressed, reflecting maturation of the zebrafish retina. Oscillatory potentials could also be isolated from the generated waveforms. CONCLUSIONS: This simplified approach to the zebrafish ERG can generate waveforms comparable to the existing approaches and helps reduce barriers for zebrafish laboratories studying ocular development and disease.


Asunto(s)
Visión de Colores , Electrorretinografía , Animales , Adaptación a la Oscuridad , Estimulación Luminosa , Retina , Células Fotorreceptoras Retinianas Conos , Pez Cebra
8.
Cells ; 9(10)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007938

RESUMEN

Photoreceptor disease results in irreparable vision loss and blindness, which has a dramatic impact on quality of life. Pathogenic mutations in RP1L1 lead to photoreceptor degenerations such as occult macular dystrophy and retinitis pigmentosa. RP1L1 is a component of the photoreceptor axoneme, the backbone structure of the photoreceptor's light-sensing outer segment. We generated an rp1l1 zebrafish mutant using CRISPR/Cas9 genome editing. Mutant animals had progressive photoreceptor functional defects as determined by electrophysiological assessment. Optical coherence tomography showed gaps in the photoreceptor layer, disrupted photoreceptor mosaics, and thinner retinas. Mutant retinas had disorganized photoreceptor outer segments and lipid-rich subretinal drusenoid deposits between the photoreceptors and retinal pigment epithelium. Our mutant is a novel model of RP1L1-associated photoreceptor disease and the first zebrafish model of photoreceptor degeneration with reported subretinal drusenoid deposits, a feature of age-related macular degeneration.


Asunto(s)
Degeneración Macular/genética , Animales , Masculino , Células Fotorreceptoras de Vertebrados , Pez Cebra
9.
Invest Ophthalmol Vis Sci ; 61(4): 9, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32293666

RESUMEN

Purpose: Analysis of photoreceptor morphology and gene expression in mispatterned eyes of zebrafish growth differentiation factor 6a (gdf6a) mutants. Methods: Rod and cone photoreceptors were compared between gdf6a mutant and control zebrafish from larval to late adult stages using transgenic labels, immunofluorescence, and confocal microscopy, as well as by transmission electron microscopy. To compare transcriptomes between larval gdf6a mutant and control zebrafish, RNA-Seq was performed on isolated eyes. Results: Although rod and cone photoreceptors differentiate in gdf6a mutant zebrafish, the cells display aberrant growth and morphology. The cone outer segments, the light-detecting sensory endings, are reduced in size in the mutant larvae and fail to recover to control size at subsequent stages. In contrast, rods form temporarily expanded outer segments. The inner segments, which generate the required energy and proteins for the outer segments, are shortened in both rods and cones at all stages. RNA-Seq analysis provides a set of misregulated genes associated with the observed abnormal photoreceptor morphogenesis. Conclusions: GDF6 mutations were previously identified in patients with Leber congenital amaurosis. Here, we reveal a unique photoreceptor phenotype in the gdf6a mutant zebrafish whereby rods and cones undergo abnormal maturation distinct for each cell type. Further, subsequent development shows partial recovery of cell morphology and maintenance of the photoreceptor layer. By conducting a transcriptomic analysis of the gdf6a larval eyes, we identified a collection of genes that are candidate regulators of photoreceptor size and morphology.


Asunto(s)
Factor 6 de Diferenciación de Crecimiento/genética , Morfogénesis/genética , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Proteínas de Pez Cebra/genética , Pez Cebra/anomalías , Animales , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Larva , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación/genética , Adhesión en Parafina , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Pez Cebra/genética
10.
J Vis Exp ; (145)2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30985739

RESUMEN

Congenital ocular coloboma is a genetic disorder that is typically observed as a cleft in the inferior aspect of the eye resulting from incomplete choroid fissure closure. Recently, the identification of individuals with coloboma in the superior aspect of the iris, retina, and lens led to the discovery of a novel structure, referred to as the superior fissure or superior ocular sulcus (SOS), that is transiently present on the dorsal aspect of the optic cup during vertebrate eye development. Although this structure is conserved across mice, chick, fish, and newt, our current understanding of the SOS is limited. In order to elucidate factors that contribute to its formation and closure, it is imperative to be able to observe it and identify abnormalities, such as delay in the closure of the SOS. Here, we set out to create a standardized series of protocols that can be used to efficiently visualize the SOS by combining widely available microscopy techniques with common molecular biology techniques such as immunofluorescent staining and mRNA overexpression. While this set of protocols focuses on the ability to observe SOS closure delay, it is adaptable to the experimenter's needs and can be easily modified. Overall, we hope to create an approachable method through which our understanding of the SOS can be advanced to expand the current knowledge of vertebrate eye development.


Asunto(s)
Desarrollo Embrionario , Ojo/embriología , Iris/embriología , Cristalino/embriología , Organogénesis , Retina/embriología , Pez Cebra/embriología , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Iris/fisiología , Cristalino/fisiología , Ratones , Retina/fisiología
11.
PLoS Genet ; 14(3): e1007246, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29522511

RESUMEN

The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Coloboma/embriología , Coloboma/genética , Citocromo P-450 CYP1B1/genética , Ojo/embriología , Adulto , Animales , Animales Modificados Genéticamente , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Embrión de Pollo , Embrión no Mamífero , Factor 6 de Diferenciación de Crecimiento/genética , Factor 6 de Diferenciación de Crecimiento/metabolismo , Humanos , Lactante , Ratones , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Female Pelvic Med Reconstr Surg ; 24(5): e35-e37, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28953077

RESUMEN

We present a cadaveric case study of an 88-year-old woman with an unusual posterior perineal hernia containing small bowel, rectum, and mesentery. Dissection revealed several loops of the small bowel occupying the presacral space and displacement of the rectum into a large perineal evagination. The intestinal mucosa appeared to have been healthy at the time of death, and we did not find any indication of rectal prolapse. There was also no evidence of past surgery, suggestive of a primary hernia. We conclude this patient had a posterior enterorectal perineal hernia. Suggestions for surgical repair are described.


Asunto(s)
Hernia Abdominal/patología , Perineo/patología , Anciano de 80 o más Años , Cadáver , Colon/patología , Femenino , Humanos , Intestino Delgado/patología , Diafragma Pélvico , Recto/patología
13.
Dev Dyn ; 244(12): 1574-80, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26370768

RESUMEN

BACKGROUND: Members of the junctional adhesion molecule (JAM) family function as cell adhesion molecules and cell surface receptors. The zebrafish genome contains six different jam genes, and jam-b and jam-c were shown to be essential for myoblast fusion during skeletal muscle development. However, little is known about jam-b2 expression and function. RESULTS: We isolated the cDNA of zebrafish jam-b2. jam-b2 is expressed specifically in extraocular muscles (EOMs), jaw muscles, and pectoral fins in zebrafish larvae, but not in trunk muscles. The identified jam-b2 expression pattern is supported by the analysis of a zebrafish Gal4-enhancer trap line, in which the coding sequence of the transcriptional activator KalTA4 together with a Gal4-dependent UAS-mCherry expression cassette was inserted into the jam-b2 locus. Intercrosses with an UAS:EGFP strain proves the possibility for targeting transgene expression to EOMs, jaw muscles and fins. Finally, we characterized the concerted contraction pattern of EOMs in larvae performing an optokinetic response. CONCLUSIONS: The expression pattern of jam-b2 suggests that it may contribute different properties to EOMs, jaw muscles, and pectoral fins. The jam-b2:KalTA4-UAS-mCherry transgenic strain serves a dual role as both a reporter for these muscles and as a valuable genetic tool for targeting transgene expression to EOMs.


Asunto(s)
Aletas de Animales/metabolismo , Molécula B de Adhesión de Unión/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Pez Cebra/metabolismo , Aletas de Animales/embriología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Molécula B de Adhesión de Unión/genética , Músculo Esquelético/embriología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
14.
BMC Dev Biol ; 13: 31, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23937294

RESUMEN

BACKGROUND: The reiterated architecture of cranial motor neurons aligns with the segmented structure of the embryonic vertebrate hindbrain. Anterior-posterior identity of cranial motor neurons depends, in part, on retinoic acid signaling levels. The early vertebrate embryo maintains a balance between retinoic acid synthetic and degradative zones on the basis of reciprocal expression domains of the retinoic acid synthesis gene aldhehyde dehydrogenase 1a2 (aldh1a2) posteriorly and the oxidative gene cytochrome p450 type 26a1 (cyp26a1) in the forebrain, midbrain, and anterior hindbrain. RESULTS: This manuscript investigates the role of zinc finger of the cerebellum (zic) transcription factors in regulating levels of retinoic acid and differentiation of cranial motor neurons. Depletion of zebrafish Zic2a and Zic2b results in a strong downregulation of aldh1a2 expression and a concomitant reduction in activity of a retinoid-dependent transgene. The vagal motor neuron phenotype caused by loss of Zic2a/2b mimics a depletion of Aldh1a2 and is rescued by exogenously supplied retinoic acid. CONCLUSION: Zic transcription factors function in patterning hindbrain motor neurons through their regulation of embryonic retinoic acid signaling.


Asunto(s)
Rombencéfalo/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Tretinoina/metabolismo , Familia de Aldehído Deshidrogenasa 1 , Sistema Enzimático del Citocromo P-450/genética , Humanos , Neuronas/metabolismo , Retinal-Deshidrogenasa/genética , Ácido Retinoico 4-Hidroxilasa , Nervio Vago/citología , Nervio Vago/metabolismo , Proteínas de Pez Cebra
15.
Exp Neurol ; 242: 1-10, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22465266

RESUMEN

Cells of the developing nervous system undergo incredible proliferation, migrate long distances, and differentiate morphologically into highly specialized structures. The dynamic changes happening at the cellular and subcellular levels can only be properly understood using time-lapse in vivo imaging approaches, for which the transparent embryonic zebrafish is ideally suited. Moreover, the genetic techniques adapted for zebrafish provide incredible spatial, temporal, and quantitative control over the expression of fluorescent proteins, such that practically any structure or cell of interest can be highlighted. Recent zebrafish studies provide new insights into the dynamic nature of cell division, neuronal migration and axon and dendrite formation, but form only the beginning of a promising new era of in vivo live imaging.


Asunto(s)
Sistema Nervioso , Neuronas/citología , Pez Cebra , Animales , Animales Modificados Genéticamente , División Celular , Movimiento Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/embriología , Sistema Nervioso/crecimiento & desarrollo , Neurogénesis , Neuronas/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
16.
EMBO J ; 31(1): 14-28, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22117219

RESUMEN

Inhibitors of apoptosis proteins (IAPs) are a highly conserved class of multifunctional proteins. Rac1 is a well-studied Rho GTPase that controls numerous basic cellular processes. While the regulation of nucleotide binding to Rac1 is well understood, the molecular mechanisms controlling Rac1 degradation are not known. Here, we demonstrate X-linked IAP (XIAP) and cellular IAP1 (c-IAP1) directly bind to Rac1 in a nucleotide-independent manner to promote its polyubiquitination at Lys147 and proteasomal degradation. These IAPs are also required for degradation of Rac1 upon CNF1 toxin treatment or RhoGDI depletion. Consistently, downregulation of XIAP or c-IAP1 by various strategies led to an increase in Rac1 protein levels in primary and tumour cells, leading to an elongated morphology and enhanced cell migration. Further, XIAP counteracts Rac1-dependent cellular polarization in the developing zebrafish hindbrain and promotes the delamination of neurons from the normal tissue architecture. These observations unveil an evolutionarily conserved role of IAPs in controlling Rac1 stability thereby regulating the plasticity of cell migration and morphogenesis.


Asunto(s)
Movimiento Celular/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis , Células HeLa , Humanos , Ubiquitinación , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Pez Cebra
17.
J Cell Biol ; 191(4): 875-90, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21059852

RESUMEN

The position of the centrosome ahead of the nucleus has been considered crucial for coordinating neuronal migration in most developmental situations. The proximity of the centrosome has also been correlated with the site of axonogenesis in certain differentiating neurons. Despite these positive correlations, accumulating experimental findings appear to negate a universal role of the centrosome in determining where an axon forms, or in leading the migration of neurons. To further examine this controversy in an in vivo setting, we have generated cell type-specific multi-cistronic gene expression to monitor subcellular dynamics in the developing zebrafish cerebellum. We show that migration of rhombic lip-derived neurons is characterized by a centrosome that does not persistently lead the nucleus, but which is instead regularly overtaken by the nucleus. In addition, axonogenesis is initiated during the onset of neuronal migration and occurs independently of centrosome proximity. These in vivo data reveal a new temporal orchestration of organelle dynamics and provide important insights into the variation in intracellular processes during vertebrate brain differentiation.


Asunto(s)
Axones , Movimiento Celular/fisiología , Centrosoma/metabolismo , Cerebelo , Neurogénesis/fisiología , Neuronas , Pez Cebra , Animales , Animales Modificados Genéticamente , Axones/fisiología , Axones/ultraestructura , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Cerebelo/citología , Cerebelo/embriología , Neuronas/citología , Neuronas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Madre/citología , Células Madre/fisiología , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
18.
Mech Dev ; 127(1-2): 36-48, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19961927

RESUMEN

Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axon's cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Receptores Inmunológicos/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Axones/metabolismo , Dendritas/metabolismo , Genes Dominantes , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/metabolismo , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Oligonucleótidos/genética , Retina/embriología , Células Ganglionares de la Retina/metabolismo , Transducción de Señal , Proteínas de Xenopus/biosíntesis
19.
Dev Biol ; 330(2): 273-85, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19361494

RESUMEN

The actin cytoskeleton inside extending axonal and dendritic processes must undergo continuous assembly and disassembly. Some extrinsic factors modulate actin turnover through controlling the activity of LIM kinase 1 (LIMK1), which phosphorylates and inactivates the actin depolymerizing factor cofilin. Here, we for the first time examine the function and regulation of LIMK1 in vivo in the vertebrate nervous system. Upon expression of wildtype or kinase-dead forms of the protein, dendrite growth by Xenopus retinal ganglion cells (RGCs) was unchanged. In contrast, maintaining a low, but significant level, of LIMK1 function in the RGC axon is critical for proper extension. Interestingly, bone morphogenetic protein receptor II (BMPRII) is a major regulator of LIMK1 in extending RGC axons, as expression of a BMPRII lacking the LIMK1 binding region caused a dramatic shortening of the axons. Previously, we found that BMPRIIs stimulate dendrite initiation in vivo. Thus, the fact that manipulation of LIMK1 activity failed to alter dendrite growth suggests that BMPs may activate distinct signalling pathways in axons and dendrites.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Dendritas/metabolismo , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Inmunohistoquímica , Hibridación in Situ , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Transgenes , Proteínas de Xenopus/genética , Xenopus laevis
20.
Mol Cell Neurosci ; 37(2): 247-60, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17997109

RESUMEN

Each type of neuron develops a unique morphology critical to its function, but almost all start with the basic plan of one long axon and multiple short, branched dendrites. Though extrinsic signals are known to direct many steps in the development of neuronal structure, little is understood about the initiation of processes, particularly dendrites. We find that Xenopus retinal ganglion cells (RGCs) explanted early will extend axons and not dendrites in dissociated cultures. If RGCs develop longer in vivo prior to culturing, many now extend dendrite-like processes in vitro, suggesting that an extrinsic factor is required to stimulate dendrite initiation. Members of the transforming growth factor beta (TGFbeta) superfamily, bone morphogenetic protein 2 (BMP2), and growth and differentiation factor 11 (GDF11), can signal cultured RGCs to form dendrites. Furthermore, TGFbeta ligands have an endogenous role: blocking BMP/GDF signaling with a secreted antagonist or inhibitory receptors reduces the number of primary dendrites extended in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Dendritas/ultraestructura , Retina/embriología , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Crecimiento Transformador beta/agonistas , Animales , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Dendritas/efectos de los fármacos , Femenino , Factores de Diferenciación de Crecimiento , Oocitos , Retina/citología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...