Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(2): 123, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336804

RESUMEN

Discovery of new small molecules that can activate distinct programmed cell death pathway is of significant interest as a research tool and for the development of novel therapeutics for pathological conditions such as cancer and infectious diseases. The small molecule raptinal was discovered as a pro-apoptotic compound that can rapidly trigger apoptosis by promoting the release of cytochrome c from the mitochondria and subsequently activating the intrinsic apoptotic pathway. As raptinal is very effective at inducing apoptosis in a variety of different cell types in vitro and in vivo, it has been used in many studies investigating cell death as well as the clearance of dying cells. While examining raptinal as an apoptosis inducer, we unexpectedly identified that in addition to its pro-apoptotic activities, raptinal can also inhibit the activity of caspase-activated Pannexin 1 (PANX1), a ubiquitously expressed transmembrane channel that regulates many cell death-associated processes. By implementing numerous biochemical, cell biological and electrophysiological approaches, we discovered that raptinal can simultaneously induce apoptosis and inhibit PANX1 activity. Surprisingly, raptinal was found to inhibit cleavage-activated PANX1 via a mechanism distinct to other well-described PANX1 inhibitors such as carbenoxolone and trovafloxacin. Furthermore, raptinal also interfered with PANX1-regulated apoptotic processes including the release of the 'find-me' signal ATP, the formation of apoptotic cell-derived extracellular vesicles, as well as NLRP3 inflammasome activation. Taken together, these data identify raptinal as the first compound that can simultaneously induce apoptosis and inhibit PANX1 channels. This has broad implications for the use of raptinal in cell death studies as well as in the development new PANX1 inhibitors.


Asunto(s)
Apoptosis , Conexinas , Fluorenos , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Muerte Celular , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Ciclopentanos/farmacología
2.
J Leukoc Biol ; 111(4): 903-920, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34699107

RESUMEN

Dendritic cells (DCs) are professional APCs of the immune system that continuously sample their environment and function to stimulate an adaptive immune response by initiating Ag-specific immunity or tolerance. Extracellular vesicles (EVs), small membrane-bound structures, are released from DCs and have been discovered to harbor functional peptide-MHC complexes, T cell costimulatory molecules, and other molecules essential for Ag presentation, immune cell regulation, and stimulating immune responses. As such, DC-derived EVs are being explored as potential immunotherapeutic agents. DC-derived EVs have also been implicated to function as a trafficking mechanism of infectious particles aiding viral propagation. This review will explore the unique features that enable DC-derived EVs to regulate immune responses and interact with recipient cells, their roles within Ag-presentation and disease settings, as well as speculating on a potential immunological role of apoptotic DC-derived EVs.


Asunto(s)
Células Dendríticas , Vesículas Extracelulares , Inmunidad Adaptativa , Tolerancia Inmunológica
3.
Commun Biol ; 3(1): 223, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385344

RESUMEN

The disassembly of apoptotic cells into small membrane-bound vesicles termed apoptotic bodies (ApoBDs) is a hallmark of apoptosis; however, the functional significance of this process is not well defined. We recently discovered a new membrane protrusion (termed beaded apoptopodia) generated by apoptotic monocytes which fragments to release an abundance of ApoBDs. To investigate the function of apoptotic monocyte disassembly, we used influenza A virus (IAV) infection as a proof-of-concept model, as IAV commonly infects monocytes in physiological settings. We show that ApoBDs generated from IAV-infected monocytes contained IAV mRNA, protein and virions and consequently, could facilitate viral propagation in vitro and in vivo, and induce a robust antiviral immune response. We also identified an antipsychotic, Haloperidol, as an unexpected inhibitor of monocyte cell disassembly which could impair ApoBD-mediated viral propagation under in vitro conditions. Together, this study reveals a previously unrecognised function of apoptotic monocyte disassembly in the pathogenesis of IAV infections.


Asunto(s)
Vesículas Extracelulares/virología , Virus de la Influenza A/fisiología , Monocitos/virología , Antivirales/farmacología , Haloperidol/farmacología , Virus de la Influenza A/efectos de los fármacos
4.
Development ; 146(13)2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31164352

RESUMEN

One fundamental property of a stem cell niche is the exchange of molecular signals between its component cells. Niche models, such as the Drosophila melanogaster testis, have been instrumental in identifying and studying the conserved genetic factors that contribute to niche molecular signalling. Here, we identify jam packed (jam), an allele of Striatin interacting protein (Strip), which is a core member of the highly conserved Striatin-interacting phosphatase and kinase (STRIPAK) complex. In the developing Drosophila testis, Strip cell-autonomously regulates the differentiation and morphology of the somatic lineage, and non-cell-autonomously regulates the proliferation and differentiation of the germline lineage. Mechanistically, Strip acts in the somatic lineage with its STRIPAK partner, Connector of kinase to AP-1 (Cka), where they negatively regulate the Jun N-terminal kinase (JNK) signalling pathway. Our study reveals a novel role for Strip/Cka in JNK pathway regulation during spermatogenesis within the developing Drosophila testis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Unión a Fosfato/fisiología , Espermatogénesis/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Regulación hacia Abajo/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Masculino , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
5.
J Extracell Vesicles ; 8(1): 1608786, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069027

RESUMEN

Apoptosis is a form of programmed cell death that occurs throughout life as part of normal development as well as pathologic processes including chronic inflammation and infection. Although the death of a cell is often considered as the only biological outcome of a cell committed to apoptosis, it is becoming increasingly clear that the dying cell can actively communicate with other cells via soluble factors as well as membrane-bound extracellular vesicles (EVs) to regulate processes including cell clearance, immunity and tissue repair. Compared to EVs generated from viable cells such as exosomes and microvesicles, apoptotic cell-derived EVs (ApoEVs) are less well defined and the basic criteria for ApoEV characterization have not been established in the field. In this study, we will examine the current understanding of ApoEVs, in particular, the ApoEV subtype called apoptotic bodies (ApoBDs). We described that a subset of ApoBDs can be larger than 5 µm and smaller than 1 µm based on flow cytometry and live time-lapse microscopy analysis, respectively. We also described that a subset of ApoBDs can expose a relatively low level of phosphatidylserine on its surface based on annexin A5 staining. Furthermore, we characterized the presence of caspase-cleaved proteins (in particular plasma membrane-associated or cytoplasmic proteins) in samples enriched in ApoBDs. Lastly, using a combination of biochemical-, live imaging- and flow cytometry-based approaches, we characterized the progressive lysis of ApoBDs. Taken together, these results extended our understanding of ApoBDs.

6.
Front Immunol ; 9: 2842, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564238

RESUMEN

During the progression of necroptosis and pyroptosis, the plasma membrane will become permeabilized through the activation of mixed lineage kinase domain like pseudokinase (MLKL) or gasdermin D (GSDMD), respectively. Recently, the progression of apoptotic cells into secondary necrotic cells following membrane lysis was shown to be regulated by gasdermin E (GSDME, or DFNA5), a process dependent on caspase 3-mediated cleavage of GSDME. Notably, GSDME was also proposed to negatively regulate the disassembly of apoptotic cells into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs) by promoting earlier onset of membrane permeabilisation. The presence of a process downstream of caspase 3 that would actively drive cell lysis and limit cell disassembly during apoptosis is somewhat surprising as this could favor the release of proinflammatory intracellular contents and hinder efficient clearance of apoptotic materials. In contrast to the latter studies, we present here that GSDME is not involved in regulating secondary necrosis in human T cells and monocytes, and also unlikely in epithelial cells. Furthermore, GSDME is evidently not a negative regulator of apoptotic cell disassembly in our cell models. Thus, the function of GSDME in regulating membrane permeabilization and cell disassembly during apoptosis may be more limited.


Asunto(s)
Apoptosis/fisiología , Monocitos/metabolismo , Necrosis/metabolismo , Receptores de Estrógenos/metabolismo , Células THP-1/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Humanos , Células Jurkat , Proteínas de Neoplasias/metabolismo , Piroptosis/fisiología , Linfocitos T/metabolismo
7.
JAAPA ; 16(4): 53-6, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14968517

RESUMEN

AIM: To investigate differences in clinical presentation between elderly and nonelderly patients with traumatic closed head injury (CHI). METHODS: A retrospective chart review was used to compare the initial presentation of elderly versus nonelderly adult patients evaluated at two trauma centers with a final diagnosis of CHI confirmed by computed tomography (CT). RESULTS: Of 171 patients who met inclusion criteria, 114 (67%) were placed in the nonelderly group and 57 (33%) in the elderly group. Loss of consciousness was reported in 28 patients (49%) in the elderly group compared to 76 patients (67%) in the nonelderly group (diff = 0.18, 95% confidence interval [CI] 0.02-0.34). CONCLUSION: Elderly patients with traumatic CHI appear to experience loss of consciousness less frequently than nonelderly patients. Loss of consciousness should not be the sole determinant of the need for CT in elderly patients with head trauma.


Asunto(s)
Traumatismos Craneocerebrales/fisiopatología , Inconsciencia/etiología , Adulto , Distribución por Edad , Anciano , Intervalos de Confianza , Traumatismos Craneocerebrales/diagnóstico , Traumatismos Craneocerebrales/diagnóstico por imagen , Humanos , Traumatismo Múltiple/etiología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Centros Traumatológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA